Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sur une question de capitulation

Author: Abdelmalek Azizi
Journal: Proc. Amer. Math. Soc. 130 (2002), 2197-2202
MSC (2000): Primary 11R37
Published electronically: January 31, 2002
MathSciNet review: 1897477
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p$ and $q$ be prime numbers such that $p \equiv 1 \bmod 8,\,\, q \equiv -1 \bmod 4$and $(\frac{\textstyle p}{\textstyle q}) = - 1$. Let $d = pq$, $\mathbf{k} = \mathbf{Q}(\sqrt{d},i)$, and let $\mathbf{ k}^{(1)}_{2}$ be the 2-Hilbert class field of $\mathbf{k}$, $\mathbf{k}^{(2)}_{2}$ the 2-Hilbert class field of $\mathbf{k}^{(1)}_{2}$ and $G_{2}$ the Galois group of $\mathbf{k}^{(2)}_{2}/\mathbf{k}$. The 2-part $C_{\mathbf{k},2}$ of the class group of $\mathbf{ k}$ is of type $(2,2)$, so $\mathbf{k}_{2}^{(1)}$contains three extensions $\mathbf{K}_{i}/\mathbf{k},\,\,i = 1,\,2,\,3$. Our goal is to study the problem of capitulation of the 2-classes of $\mathbf{k}$ in $\mathbf{K}_{i},\,\,i = 1,\,2,\,3$, and to determine the structure of $G_{2}$.

RSESUM´E. Soient $p$ et $q$ deux nombres premiers tels que $p \equiv 1 \bmod 8,\,\, q \equiv -1\bmod 4$et $(\frac{\textstyle p}{\textstyle q}) = - 1$, $d = pq$, $i = \sqrt{-1}$, $\mathbf{k} = \mathbf{Q}(\sqrt{d},i)$, $\mathbf{k}^{(1)}_{2}$ le 2-corps de classes de Hilbert de $\mathbf{k}$, $\mathbf{k}^{(2)}_{2}$le 2-corps de classes de Hilbert de $\mathbf{k}^{(1)}_{2}$et $G_{2}$ le groupe de Galois de $\mathbf{k}^{(2)}_{2}/\mathbf{k}$. La 2-partie $C_{\mathbf{k}, 2}$du groupe de classes de $\mathbf{k}$est de type $(2,2)$, par suite $\mathbf{k}^{(1)}_{2}$contient trois extensions $\mathbf{K}_{i}/\mathbf{k},\,\,i = 1,\,2,\,3$. On s'intéresse au problème de capitulation des 2-classes de $\mathbf{k}$ dans $\mathbf{K}_{i},\,\,i = 1,\,2,\,3$, et à déterminer la structure de $G_{2}$.

References [Enhancements On Off] (What's this?)

  • 1. Abdelmalek Azizi, Sur la capitulation des 2-classes d’idéaux de 𝑄(√𝑑,𝑖), C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 2, 127–130 (French, with English and French summaries). MR 1467063, 10.1016/S0764-4442(97)84585-5
  • 2. Abdelmalek Azizi, Sur le 2-groupe de classes d’idéaux de 𝑄(√𝑑,𝑖), Rend. Circ. Mat. Palermo (2) 48 (1999), no. 1, 71–92 (French, with English summary). MR 1705171, 10.1007/BF02844380
  • 3. Abdelmalek Azizi, Unités de certains corps de nombres imaginaires et abéliens sur 𝐐, Ann. Sci. Math. Québec 23 (1999), no. 1, 15–21 (French, with English and French summaries). MR 1721726
  • 4. Abdelmalek Azizi, Capitulation of the 2-ideal classes of 𝑄(√𝑝₁𝑝₂,𝑖) where 𝑝₁ and 𝑝₂ are primes such that 𝑝₁≡1\pmod8, 𝑝₂≡5\pmod8 and (\frac{𝑝₁}𝑝₂)=-1, Algebra and number theory (Fez), Lecture Notes in Pure and Appl. Math., vol. 208, Dekker, New York, 2000, pp. 13–19. MR 1724671
  • 5. Abdelmalek Azizi, Sur la capitulation des 2-classes d’idéaux de 𝑘=𝑄(√2𝑝𝑞,𝑖) où 𝑝≡-𝑞≡1\bmod4, Acta Arith. 94 (2000), no. 4, 383–399 (French). MR 1779950
  • 6. Pierre Barrucand and Harvey Cohn, Note on primes of type 𝑥²+32𝑦², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67–70. MR 0249396
  • 7. S. M. Chang and R. Foote, Capitulation in class field extensions of type (𝑝,𝑝), Canad. J. Math. 32 (1980), no. 5, 1229–1243. MR 596106, 10.4153/CJM-1980-091-9
  • 8. Harvey Cohn, The explicit Hilbert 2-cyclic class field for 𝑄(√-𝑝), J. Reine Angew. Math. 321 (1981), 64–77. MR 597980, 10.1515/crll.1981.321.64
  • 9. Franz-Peter Heider and Bodo Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1–25 (German). MR 671319
  • 10. H. Kisilevsky, Number fields with class number congruent to 4 𝑚𝑜𝑑 8 and Hilbert’s theorem 94, J. Number Theory 8 (1976), no. 3, 271–279. MR 0417128
  • 11. Tomio Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85 (German). MR 0083009
  • 12. Katsuya Miyake, Algebraic investigations of Hilbert’s Theorem 94, the principal ideal theorem and the capitulation problem, Exposition. Math. 7 (1989), no. 4, 289–346. MR 1018712
  • 13. Hiroshi Suzuki, A generalization of Hilbert’s theorem 94, Nagoya Math. J. 121 (1991), 161–169. MR 1096472
  • 14. Fumiyuki Terada, A principal ideal theorem in the genus field, Tôhoku Math. J. (2) 23 (1971), 697–718. MR 0306158
  • 15. Hideo Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201–209 (1966). MR 0214565

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R37

Retrieve articles in all journals with MSC (2000): 11R37

Additional Information

Abdelmalek Azizi
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Mohammed 1, Oujda, Maroc

Keywords: Groupe des unit\'es, syst\`eme fondamental d'unit\'es, capitulation, corps de classes de Hilbert
Received by editor(s): February 23, 2001
Published electronically: January 31, 2002
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2002 American Mathematical Society