Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Sur une question de capitulation


Author: Abdelmalek Azizi
Journal: Proc. Amer. Math. Soc. 130 (2002), 2197-2202
MSC (2000): Primary 11R37
Published electronically: January 31, 2002
MathSciNet review: 1897477
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p$ and $q$ be prime numbers such that $p \equiv 1 \bmod 8,\,\, q \equiv -1 \bmod 4$and $(\frac{\textstyle p}{\textstyle q}) = - 1$. Let $d = pq$, $\mathbf{k} = \mathbf{Q}(\sqrt{d},i)$, and let $\mathbf{ k}^{(1)}_{2}$ be the 2-Hilbert class field of $\mathbf{k}$, $\mathbf{k}^{(2)}_{2}$ the 2-Hilbert class field of $\mathbf{k}^{(1)}_{2}$ and $G_{2}$ the Galois group of $\mathbf{k}^{(2)}_{2}/\mathbf{k}$. The 2-part $C_{\mathbf{k},2}$ of the class group of $\mathbf{ k}$ is of type $(2,2)$, so $\mathbf{k}_{2}^{(1)}$contains three extensions $\mathbf{K}_{i}/\mathbf{k},\,\,i = 1,\,2,\,3$. Our goal is to study the problem of capitulation of the 2-classes of $\mathbf{k}$ in $\mathbf{K}_{i},\,\,i = 1,\,2,\,3$, and to determine the structure of $G_{2}$.

RSESUM´E. Soient $p$ et $q$ deux nombres premiers tels que $p \equiv 1 \bmod 8,\,\, q \equiv -1\bmod 4$et $(\frac{\textstyle p}{\textstyle q}) = - 1$, $d = pq$, $i = \sqrt{-1}$, $\mathbf{k} = \mathbf{Q}(\sqrt{d},i)$, $\mathbf{k}^{(1)}_{2}$ le 2-corps de classes de Hilbert de $\mathbf{k}$, $\mathbf{k}^{(2)}_{2}$le 2-corps de classes de Hilbert de $\mathbf{k}^{(1)}_{2}$et $G_{2}$ le groupe de Galois de $\mathbf{k}^{(2)}_{2}/\mathbf{k}$. La 2-partie $C_{\mathbf{k}, 2}$du groupe de classes de $\mathbf{k}$est de type $(2,2)$, par suite $\mathbf{k}^{(1)}_{2}$contient trois extensions $\mathbf{K}_{i}/\mathbf{k},\,\,i = 1,\,2,\,3$. On s'intéresse au problème de capitulation des 2-classes de $\mathbf{k}$ dans $\mathbf{K}_{i},\,\,i = 1,\,2,\,3$, et à déterminer la structure de $G_{2}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11R37

Retrieve articles in all journals with MSC (2000): 11R37


Additional Information

Abdelmalek Azizi
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Mohammed 1, Oujda, Maroc
Email: azizi@sciences.univ-oujda.ac.ma

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06424-9
PII: S 0002-9939(02)06424-9
Keywords: Groupe des unit\'es, syst\`eme fondamental d'unit\'es, capitulation, corps de classes de Hilbert
Received by editor(s): February 23, 2001
Published electronically: January 31, 2002
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2002 American Mathematical Society