Positive solutions of a logistic equation on unbounded intervals

Authors:
Li Ma and Xingwang Xu

Journal:
Proc. Amer. Math. Soc. **130** (2002), 2947-2958

MSC (1991):
Primary 34B09, 35J65

DOI:
https://doi.org/10.1090/S0002-9939-02-06405-5

Published electronically:
April 22, 2002

MathSciNet review:
1908918

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the existence of positive solutions of a one-parameter family of logistic equations on or on . These equations are stationary versions of the Fisher equations and the KPP equations. We also study the blow-up region of a sequence of the solutions when the parameter approaches a critical value and the non-existence of positive solutions beyond the critical value. We use the direct method and the sub and super solution method.

**1.**G.Buttazzo, M.Giaquinta, and S.Hildebrandt,*One-dimensional variational problems*, Oxford scientific publishing, Clarendon press, Oxford, 1998. MR**2001a:49001****2.**Z.R.Jin,*Principal eigenvalues with indefinite weight functions*, Trans. AMS, 349(1997)1945-1959. MR**97h:35056****3.**J.Lopez-Gomez and J.C.Sabina de Lis,*First variation of principal eigenvalues*, J.Diff. Equa., 148(1998)47-64. MR**99f:35033****4.**K.J.Brown, C.Cosner, and J.Fleckinger,*Principal eigenvalues for problems with indefinite weight function on*, Proc.AMS, 109(1990)147-155. MR**90m:35140****5.**W.Allegretto,*Principal eigenvalues for indefinite weight elliptic problems in*, Proc. AMS, 116(1992)701-706. MR**93a:35114****6.**J.Kazdan and F.Warner,*Scalar curvature and conformal deformation of Riemannian structure*, J.Diff. Geom., 10(1975)113-134. MR**51:1661****7.**T.Ouyang,*On the positive solutions of semilinear equation**on the compact manifolds*, Trans. AMS, 331(1992)503-527. MR**92h:35012****8.**M.A. del Pino,*Positive solutions of a semilinear elliptic equations on a compact manifold*, Nonlinear Analysis, 22(1994)1423-1430. MR**95g:58256****9.**A.Edelson and A.Rumbos,*Linear and semilinear eigenvalue problems in*, Comm. Partial Diff. Equations, 18, 215-240(1993). MR**94b:35101****10.**Y.Du, Q.Huang,*Blow-up solutions for a class of semilinear elliptic and parabolic equations*, SIAM J.Math. Anal., 31(1999)1-18. MR**2000g:35059****11.**L. Ma,*Conformal deformations on a noncompact riemannian manifold*, Math. Ann., 295(1993)75-80. MR**93k:53040****12.**P.Li, L.F.Tam, D.Yang,*On the elliptic equation**on complete Riemannian manifolds and their geometric applications*, Trans. AMS, 350(1998)1045-1078. MR**98e:58175****13.**W.M.Ni,*On the elliptic equation**, its generalizations, and applications in geometry*, Indiana Univ. Math. J., 31(1982)495-529. MR**84e:35049****14.**P.Aviles, R.McOwen,*Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds*, J.Diff.Geom., 27(1988)225-239. MR**89b:58225****15.**D.Gilbarg and N.S.Trudinger,*Elliptic Partial Differential Equation of Second Order*, Springer-Verlag, 1977. MR**57:13109****16.**F.H.Lin,*On the elliptic equations*, Proc. AMS, 95(1985)219-226. MR**86k:35041****17.**M.Marcus and L.Veron,*Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations*, Anal. Nonlinéaire, 14(1997)237-274. MR**97m:35068****18.**Y.H.Du and L. Ma,*Positive solutions of an elliptic partial differential equation on*, preprint, 2000.**19.**Y.H.Du and L.Ma,*Logistic type equations on**by a squeezing method involving boundary blow-up solutions*, Journal of London Mathematical Society, 64(2001)107-124.**20.**G.A.Afrouzi and K.J.Brown,*On a diffusive logistic equation*, JMAA, 225(1998)326-339. MR**99g:35130****21.**E.N.Dancer and S.P.Hasting,*On the global bifurcation diagram for the one dimensional Ginzburg-Landau model of superconductivity*, European J. Applied Math., 11(2000)271-291. CMP**2001:16**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34B09,
35J65

Retrieve articles in all journals with MSC (1991): 34B09, 35J65

Additional Information

**Li Ma**

Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Email:
lma@math.tsinghua.edu.cn

**Xingwang Xu**

Affiliation:
Department of Mathematics, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Email:
matxuxw@math.nus.edu.sg

DOI:
https://doi.org/10.1090/S0002-9939-02-06405-5

Keywords:
Direct method,
blow-up,
positive solution

Received by editor(s):
October 9, 2000

Received by editor(s) in revised form:
May 3, 2001

Published electronically:
April 22, 2002

Additional Notes:
The work of the first author was partially supported by the 973 project of China, a grant from the Ministry of Education, and a scientific grant of Tsinghua University at Beijing. The authors thank the referee for helpful corrections.

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2002
American Mathematical Society