Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

An example of amenable Kac systems


Author: Chi-Keung Ng
Journal: Proc. Amer. Math. Soc. 130 (2002), 2995-2998
MSC (2000): Primary 46L05, 46L55; Secondary 43A07, 22D25
Published electronically: March 29, 2002
MathSciNet review: 1908922
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By giving an interesting characterisation of amenable multiplicative unitaries, we show, in a very simple way, that bicrossproducts of amenable locally compact groups are both amenable and coamenable.


References [Enhancements On Off] (What's this?)

  • 1. Saad Baaj, Représentation régulière du groupe quantique des déplacements de Woronowicz, Astérisque 232 (1995), 11–48 (French). Recent advances in operator algebras (Orléans, 1992). MR 1372523
  • 2. Saad Baaj and Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de 𝐶*-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425–488 (French, with English summary). MR 1235438
  • 3. Saad Baaj and Georges Skandalis, Transformations pentagonales, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 7, 623–628 (French, with English and French summaries). MR 1652717, 10.1016/S0764-4442(99)80090-1
  • 4. E. Bédos, G.J. Murphy and L. Tuset, Co-Amenability of Compact Quantum Groups, J. Geom. Phys. 40 (2001), 130-153. CMP 2002:03
  • 5. Mohammed E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), no. 2, 383–401. MR 1047140, 10.1007/BF01231192
  • 6. Michel Enock and Jean-Marie Schwartz, Algèbres de Kac moyennables, Pacific J. Math. 125 (1986), no. 2, 363–379 (French, with English summary). MR 863532
  • 7. Shahn Majid, Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations, J. Funct. Anal. 95 (1991), no. 2, 291–319. MR 1092128, 10.1016/0022-1236(91)90031-Y
  • 8. Chi-Keung Ng, Morphisms of multiplicative unitaries, J. Operator Theory 38 (1997), no. 2, 203–224. MR 1606928
  • 9. Chi-Keung Ng, Amenability of Hopf 𝐶*-algebras, Operator theoretical methods (Timişoara, 1998) Theta Found., Bucharest, 2000, pp. 269–284. MR 1770329
  • 10. C.K. Ng, Duality of Hopf $C^*$-algebras, preprint.
  • 11. C.K. Ng, Amenable representations and Reiter's property for Kac algebras, preprint.
  • 12. Takehiko Yamanouchi, Bicrossproduct Kac algebras, bicrossproduct groups and von Neumann algebras of Takesaki’s type, Math. Scand. 71 (1992), no. 2, 252–260. MR 1212708
  • 13. S. L. Woronowicz, From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), no. 1, 127–149. MR 1369908, 10.1142/S0129167X96000086

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05, 46L55, 43A07, 22D25

Retrieve articles in all journals with MSC (2000): 46L05, 46L55, 43A07, 22D25


Additional Information

Chi-Keung Ng
Affiliation: Department of Pure Mathematics, The Queen’s University of Belfast, Belfast BT7 1NN, United Kingdom
Email: c.k.ng@qub.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-02-06482-1
Received by editor(s): January 3, 2001
Received by editor(s) in revised form: May 9, 2001
Published electronically: March 29, 2002
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society