Complemented isometric copies of in dual Banach spaces
Author:
J. Hagler
Journal:
Proc. Amer. Math. Soc. 130 (2002), 33133324
MSC (2000):
Primary 46B04, 46B10; Secondary 46B20
Published electronically:
March 25, 2002
MathSciNet review:
1913011
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a real or complex Banach space and . Then contains a complemented, isometric copy of if and only if contains a complemented, isometric copy of if and only if contains a subspace asymptotic to .
 [DGH]
Stephen
J. Dilworth, Maria
Girardi, and James
Hagler, Dual Banach spaces which contain an isometric copy of
𝐿₁, Bull. Polish Acad. Sci. Math. 48
(2000), no. 1, 1–12. MR 1751149
(2001e:46016)
 [DJLT]
P.
N. Dowling, W.
B. Johnson, C.
J. Lennard, and B.
Turett, The optimality of James’s
distortion theorems, Proc. Amer. Math. Soc.
125 (1997), no. 1,
167–174. MR 1346969
(97d:46010), http://dx.doi.org/10.1090/S0002993997035375
 [DL]
P.
N. Dowling and C.
J. Lennard, Every nonreflexive subspace of
𝐿₁[0,1] fails the fixed point property, Proc. Amer. Math. Soc. 125 (1997), no. 2, 443–446. MR 1350940
(97d:46034), http://dx.doi.org/10.1090/S0002993997035776
 [DLT]
P.
N. Dowling, C.
J. Lennard, and B.
Turett, Reflexivity and the fixedpoint property for nonexpansive
maps, J. Math. Anal. Appl. 200 (1996), no. 3,
653–662. MR 1393106
(97c:47062), http://dx.doi.org/10.1006/jmaa.1996.0229
 [DRT]
Patrick
N. Dowling, Narcisse
Randrianantoanina, and Barry
Turett, Remarks on James’s distortion theorems, Bull.
Austral. Math. Soc. 57 (1998), no. 1, 49–54. MR 1623804
(99b:46014), http://dx.doi.org/10.1017/S0004972700031403
 [H1]
J. Hagler, Embeddings of into conjugate Banach spaces, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.
 [H2]
James
Hagler, Some more Banach spaces which contain 𝐿¹,
Studia Math. 46 (1973), 35–42. MR 0333670
(48 #11995)
 [HS]
James
Hagler and Charles
Stegall, Banach spaces whose duals contain complemented subspaces
isomorphic to 𝐶[0,1], J. Functional Analysis
13 (1973), 233–251. MR 0350381
(50 #2874)
 [J]
William
B. Johnson, A complementary universal conjugate Banach space and
its relation to the approximation problem, Proceedings of the
International Symposium on Partial Differential Equations and the Geometry
of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 301–310
(1973). MR
0326356 (48 #4700)
 [JRZ]
W.
B. Johnson, H.
P. Rosenthal, and M.
Zippin, On bases, finite dimensional decompositions and weaker
structures in Banach spaces, Israel J. Math. 9
(1971), 488–506. MR 0280983
(43 #6702)
 [L]
Joram
Lindenstrauss, A short proof of Liapounoff’s convexity
theorem, J. Math. Mech. 15 (1966), 971–972. MR 0207941
(34 #7754)
 [LR]
J.
Lindenstrauss and H.
P. Rosenthal, The \cal𝐿_{𝑝} spaces, Israel J.
Math. 7 (1969), 325–349. MR 0270119
(42 #5012)
 [P]
A.
Pełczyński, On Banach spaces containing
𝐿₁(𝜇), Studia Math. 30 (1968),
231–246. MR 0232195
(38 #521)
 [R]
Haskell
P. Rosenthal, On factors of 𝐶([0,1]) with nonseparable
dual, Proceedings of the International Symposium on Partial
Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem,
1972), 1972, pp. 361–378 (1973); correction, ibid. 21 (1975),
no. 1, 93–94. MR 0388063
(52 #8900)
 [S]
C.
Stegall, Banach spaces whose duals contain
𝑙₁(Γ) with applications to the study of dual
𝐿₁(𝜇) spaces, Trans.
Amer. Math. Soc. 176 (1973), 463–477. MR 0315404
(47 #3953), http://dx.doi.org/10.1090/S00029947197303154043
 [DGH]
 S. Dilworth, M. Girardi and J. Hagler, Dual Banach spaces which contain an isometric copy of , Bull. Polon. Acad. Sci. 48 (2000), 112. MR 2001e:46016
 [DJLT]
 P. N. Dowling, W. B. Johnson, C. J. Lennard and B. Turett, The optimality of James's distortion theorems, Proc. Amer. Math. Soc. 125 (1997), 167174. MR 97d:46010
 [DL]
 P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of fails the fixed point property, Proc. Amer. Math. Soc. 125 (1997), 443446. MR 97d:46034
 [DLT]
 P. N. Dowling, C. J. Lennard and B. Turett, Reflexivity and the fixedpoint property for neonexpansive maps, J. Math. Analysis and Applications 200 (1996), 653662. MR 97c:47062
 [DRT]
 Patrick N. Dowling, Narcisse Randrianantoanina and Barry Turett, Remarks on James's distortion theorems, Bull. Austral. Math. Soc. 57 (1998), 4954. MR 99b:46014
 [H1]
 J. Hagler, Embeddings of into conjugate Banach spaces, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.
 [H2]
 J. Hagler, Some more Banach spaces which contain , Studia Math. 46 (1973), 3542. MR 48:11995
 [HS]
 J. Hagler and C. Stegall, Banach spaces whose duals contain complemented subspaces isomorphic to , J. Funct. Anal.13 (1973), 233251. MR 50:2874
 [J]
 W. B. Johnson, A complementably universal conjugate Banach space and its relation to the approximation property,Israel J. Math. 13 (1972), 301310. MR 48:4700
 [JRZ]
 W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488506. MR 43:6702
 [L]
 J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. and Mech. 15 (1966), 971972. MR 34:7754
 [LR]
 J. Lindenstrauss and H. P. Rosenthal, The spaces, Israel J. Math. 7 (1969), 325349. MR 42:5012
 [P]
 A. Peczynski, On Banach spaces containing , Studia Math. 30 (1968), 231246. MR 38:521
 [R]
 H. P. Rosenthal, On factors of with nonseparable dual, Israel J. Math. 13 (1972), 361378. MR 52:8900
 [S]
 C. Stegall, Banach spaces whose duals contain with applications to the study of dual spaces, Trans. Amer. Math. Soc. 176 (1993), 463477. MR 47:3953
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
46B04,
46B10,
46B20
Retrieve articles in all journals
with MSC (2000):
46B04,
46B10,
46B20
Additional Information
J. Hagler
Affiliation:
Department of Mathematics, University of Denver, Denver, Colorado 80208
Email:
jhagler@math.du.edu
DOI:
http://dx.doi.org/10.1090/S0002993902064742
PII:
S 00029939(02)064742
Keywords:
Banach spaces,
complemented isometric copies of $L_1$,
$\left( 1,K\right) $\emph{}asymptotic copies of\emph{ }$\left( \ell_{1}\oplus\sum_{n}\ell_{\infty}^{n}\right) _{1}$
Received by editor(s):
January 30, 2001
Received by editor(s) in revised form:
June 13, 2001
Published electronically:
March 25, 2002
Additional Notes:
The author would especially like to thank H. P. Rosenthal and C. Stegall. Thanks also go to M. Girardi, S. Dilworth, W. B.\ Johnson and the referee for helpful comments and suggestions
Communicated by:
N. TomczakJaegermann
Article copyright:
© Copyright 2002
American Mathematical Society
