Complemented isometric copies of in dual Banach spaces

Author:
J. Hagler

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3313-3324

MSC (2000):
Primary 46B04, 46B10; Secondary 46B20

DOI:
https://doi.org/10.1090/S0002-9939-02-06474-2

Published electronically:
March 25, 2002

MathSciNet review:
1913011

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real or complex Banach space and . Then contains a -complemented, isometric copy of if and only if contains a -complemented, isometric copy of if and only if contains a subspace -asymptotic to .

**[DGH]**S. Dilworth, M. Girardi and J. Hagler, Dual Banach spaces which contain an isometric copy of , Bull. Polon. Acad. Sci.**48**(2000), 1-12. MR**2001e:46016****[DJLT]**P. N. Dowling, W. B. Johnson, C. J. Lennard and B. Turett, The optimality of James's distortion theorems,*Proc. Amer. Math. Soc.***125**(1997), 167-174. MR**97d:46010****[DL]**P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of fails the fixed point property,*Proc. Amer. Math. Soc.***125**(1997), 443-446. MR**97d:46034****[DLT]**P. N. Dowling, C. J. Lennard and B. Turett, Reflexivity and the fixed-point property for neonexpansive maps,*J. Math. Analysis and Applications***200**(1996), 653-662. MR**97c:47062****[DRT]**Patrick N. Dowling, Narcisse Randrianantoanina and Barry Turett, Remarks on James's distortion theorems,*Bull. Austral. Math. Soc.***57**(1998), 49-54. MR**99b:46014****[H1]**J. Hagler, Embeddings of into conjugate Banach spaces, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.**[H2]**J. Hagler, Some more Banach spaces which contain ,*Studia Math.***46**(1973), 35-42. MR**48:11995****[HS]**J. Hagler and C. Stegall, Banach spaces whose duals contain complemented subspaces isomorphic to ,*J. Funct. Anal.***13 (**1973**),**233-251. MR**50:2874****[J]**W. B. Johnson, A complementably universal conjugate Banach space and its relation to the approximation property,*Israel J. Math.***13**(1972), 301-310. MR**48:4700****[JRZ]**W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces,*Israel J. Math.***9**(1971), 488-506. MR**43:6702****[L]**J. Lindenstrauss, A short proof of Liapounoff's convexity theorem,*J. Math. and Mech.***15**(1966), 971-972. MR**34:7754****[LR]**J. Lindenstrauss and H. P. Rosenthal, The spaces,*Israel J. Math.***7**(1969), 325-349. MR**42:5012****[P]**A. Peczynski, On Banach spaces containing ,*Studia Math.***30**(1968), 231-246. MR**38:521****[R]**H. P. Rosenthal, On factors of with non-separable dual,*Israel J. Math.***13**(1972), 361-378. MR**52:8900****[S]**C. Stegall, Banach spaces whose duals contain with applications to the study of dual spaces, Trans. Amer. Math. Soc.**176**(1993), 463-477. MR**47:3953**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46B04,
46B10,
46B20

Retrieve articles in all journals with MSC (2000): 46B04, 46B10, 46B20

Additional Information

**J. Hagler**

Affiliation:
Department of Mathematics, University of Denver, Denver, Colorado 80208

Email:
jhagler@math.du.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06474-2

Keywords:
Banach spaces,
complemented isometric copies of $L_1$,
$\left( 1,K\right) $\emph{-}asymptotic copies of\emph{ }$\left( \ell_{1}\oplus\sum_{n}\ell_{\infty}^{n}\right) _{1}$

Received by editor(s):
January 30, 2001

Received by editor(s) in revised form:
June 13, 2001

Published electronically:
March 25, 2002

Additional Notes:
The author would especially like to thank H. P. Rosenthal and C. Stegall. Thanks also go to M. Girardi, S. Dilworth, W. B. Johnson and the referee for helpful comments and suggestions

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2002
American Mathematical Society