Complemented isometric copies of in dual Banach spaces

Author:
J. Hagler

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3313-3324

MSC (2000):
Primary 46B04, 46B10; Secondary 46B20

Published electronically:
March 25, 2002

MathSciNet review:
1913011

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real or complex Banach space and . Then contains a -complemented, isometric copy of if and only if contains a -complemented, isometric copy of if and only if contains a subspace -asymptotic to .

**[DGH]**Stephen J. Dilworth, Maria Girardi, and James Hagler,*Dual Banach spaces which contain an isometric copy of 𝐿₁*, Bull. Polish Acad. Sci. Math.**48**(2000), no. 1, 1–12. MR**1751149****[DJLT]**P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett,*The optimality of James’s distortion theorems*, Proc. Amer. Math. Soc.**125**(1997), no. 1, 167–174. MR**1346969**, 10.1090/S0002-9939-97-03537-5**[DL]**P. N. Dowling and C. J. Lennard,*Every nonreflexive subspace of 𝐿₁[0,1] fails the fixed point property*, Proc. Amer. Math. Soc.**125**(1997), no. 2, 443–446. MR**1350940**, 10.1090/S0002-9939-97-03577-6**[DLT]**P. N. Dowling, C. J. Lennard, and B. Turett,*Reflexivity and the fixed-point property for nonexpansive maps*, J. Math. Anal. Appl.**200**(1996), no. 3, 653–662. MR**1393106**, 10.1006/jmaa.1996.0229**[DRT]**Patrick N. Dowling, Narcisse Randrianantoanina, and Barry Turett,*Remarks on James’s distortion theorems*, Bull. Austral. Math. Soc.**57**(1998), no. 1, 49–54. MR**1623804**, 10.1017/S0004972700031403**[H1]**J. Hagler, Embeddings of into conjugate Banach spaces, Ph.D. Thesis, University of California, Berkeley, Calif., 1972.**[H2]**James Hagler,*Some more Banach spaces which contain 𝐿¹*, Studia Math.**46**(1973), 35–42. MR**0333670****[HS]**James Hagler and Charles Stegall,*Banach spaces whose duals contain complemented subspaces isomorphic to 𝐶[0,1]*, J. Functional Analysis**13**(1973), 233–251. MR**0350381****[J]**William B. Johnson,*A complementary universal conjugate Banach space and its relation to the approximation problem*, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 301–310 (1973). MR**0326356****[JRZ]**W. B. Johnson, H. P. Rosenthal, and M. Zippin,*On bases, finite dimensional decompositions and weaker structures in Banach spaces*, Israel J. Math.**9**(1971), 488–506. MR**0280983****[L]**Joram Lindenstrauss,*A short proof of Liapounoff’s convexity theorem*, J. Math. Mech.**15**(1966), 971–972. MR**0207941****[LR]**J. Lindenstrauss and H. P. Rosenthal,*The \cal𝐿_{𝑝} spaces*, Israel J. Math.**7**(1969), 325–349. MR**0270119****[P]**A. Pełczyński,*On Banach spaces containing 𝐿₁(𝜇)*, Studia Math.**30**(1968), 231–246. MR**0232195****[R]**Haskell P. Rosenthal,*On factors of 𝐶([0,1]) with non-separable dual*, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 361–378 (1973); correction, ibid. 21 (1975), no. 1, 93–94. MR**0388063****[S]**C. Stegall,*Banach spaces whose duals contain 𝑙₁(Γ) with applications to the study of dual 𝐿₁(𝜇) spaces*, Trans. Amer. Math. Soc.**176**(1973), 463–477. MR**0315404**, 10.1090/S0002-9947-1973-0315404-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46B04,
46B10,
46B20

Retrieve articles in all journals with MSC (2000): 46B04, 46B10, 46B20

Additional Information

**J. Hagler**

Affiliation:
Department of Mathematics, University of Denver, Denver, Colorado 80208

Email:
jhagler@math.du.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-02-06474-2

Keywords:
Banach spaces,
complemented isometric copies of $L_1$,
$\left( 1,K\right) $\emph{-}asymptotic copies of\emph{ }$\left( \ell_{1}\oplus\sum_{n}\ell_{\infty}^{n}\right) _{1}$

Received by editor(s):
January 30, 2001

Received by editor(s) in revised form:
June 13, 2001

Published electronically:
March 25, 2002

Additional Notes:
The author would especially like to thank H. P. Rosenthal and C. Stegall. Thanks also go to M. Girardi, S. Dilworth, W. B. Johnson and the referee for helpful comments and suggestions

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2002
American Mathematical Society