Sets that force recurrence

Authors:
Alexander Blokh and Adam Fieldsteel

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3571-3578

MSC (2000):
Primary 37B20

DOI:
https://doi.org/10.1090/S0002-9939-02-06349-9

Published electronically:
July 15, 2002

MathSciNet review:
1920036

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize those subsets of the positive integers with the property that, whenever a point in a dynamical system enters a compact set along , contains a recurrent point. We do the same for uniform recurrence.

**[1]**Furstenberg, H.,*Recurrence in Ergodic Theory and Combinatorial Number Theory*, Princeton University Press, Princeton, NJ, 1981 MR**82j:28010****[2]**Furstenberg, H. and Weiss, B., Topological dynamics and combinatorial number theory, J. D'Analyse Math,**34**(1978), pp. 61-85 MR**80g:05009****[3]**Glasner, S., Divisible properties and the Stone-Cech compactification, Can. J. Math.,**34**, No. 4, 1980, pp. 993-1007 MR**82a:54040****[4]**Gottschalk, W. H., and Hedlund, G. A., Topological Dynamics, AMS Colloquium Publications,**36**, 1955 MR**17:650e****[5]**Hindman, N., Finite sums from sequences within cells of a partition of N, J. Combin. Th.,**A17**(1974), 1-11 MR**50:2067****[6]**Hindman, N., Ultrafilters and combinatorial number theory,*Number Theory Carbondale 1979,*M. Nathanson, ed., Lecture Notes in Math.,**751**(1979), 119-184 MR**81m:10019****[7]**van der Waerden, B., Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk.**15**(1927), 212-216

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
37B20

Retrieve articles in all journals with MSC (2000): 37B20

Additional Information

**Alexander Blokh**

Affiliation:
Department of Mathematics, University of Alabama at Birmingham, UAB Station, Birmingham, Alabama 35294-2060

Email:
ablokh@vorteb.math.uab.edu

**Adam Fieldsteel**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459

Email:
afieldsteel@wesleyan.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06349-9

Received by editor(s):
November 30, 2000

Published electronically:
July 15, 2002

Additional Notes:
The first author was partially supported by NSF grant DMS-9970363

Communicated by:
Michael Handel

Article copyright:
© Copyright 2002
American Mathematical Society