Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Triangular Toeplitz contractions and Cowen sets for analytic polynomials


Authors: Muneo Cho, Raúl E. Curto and Woo Young Lee
Journal: Proc. Amer. Math. Soc. 130 (2002), 3597-3604
MSC (2000): Primary 47B35, 15A57, 15A60; Secondary 47B20, 30D50
Published electronically: May 8, 2002
MathSciNet review: 1920039
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathfrak{L}_{N}$ be the collection of $N\times N$ lower triangular Toeplitz matrices and let $\mathfrak{T}_{N}$ be the collection of $N\times N$lower triangular Toeplitz contractions. We show that $\mathfrak{T}_{N}$ is compact and strictly convex, in the spectral norm, with respect to $\mathfrak{L}_{N}$; that is, $\mathfrak{T}_{N}$ is compact, convex and $\partial _{\mathfrak{L}_{N}} \mathfrak{T}_{N} \subseteq \text{\rm {ext}}\,\mathfrak{T}_{N}$, where $\partial _{\mathfrak{L}_{N}}(\cdot )$ and $\operatorname{ext}(\cdot )$denote the topological boundary with respect to $\mathfrak{L}_{N}$ and the set of extreme points, respectively. As an application, we show that the reduced Cowen set for an analytic polynomial is strictly convex; more precisely, if $f$ is an analytic polynomial and if $G_{f}^{\prime }:=\{g\in H^{\infty }(\mathbb{T}): \text{$g(0)=0$\space and the Toeplitz operator $T_{f+\bar g}$\space is hyponormal}\}$, then $G_{f}^{\prime }$ is strictly convex. This answers a question of C. Cowen for the case of analytic polynomials.


References [Enhancements On Off] (What's this?)

  • [Con] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985. MR 86h:46001
  • [Cow1] C.C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J.B. Conway and B.B. Morrel, eds.), Pitman Research Notes in Mathematics, Vol 171, Longman, 1988, pp. 155-167. MR 90j:47022
  • [Cow2] C.C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812. MR 89f:47038
  • [Da] K.R. Davidson, Nest Algebras, Pitman Res. Notes Math. Ser., Vol 191, Longman, 1988. MR 90f:47062
  • [dLR] K. deLeeuw and W. Rudin, Extreme points and extremal problems in $H_{1}$, Pacific J. Math. 8 (1958), 467-485. MR 20:5426
  • [FL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174. MR 97k:47027
  • [Ga] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 83g:30037
  • [GGK] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol II, Birkhäuser Verlag, Basel, 1993. MR 95a:47001
  • [JR] C.R. Johnson and L. Rodman, Completion of Toeplitz partial contractions, SIAM J. Matrix Anal. Appl. 9 (1988), 159-167. MR 89f:47040
  • [Ha] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982. MR 84e:47001
  • [NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753-767. MR 93j:47040
  • [Næ] G. Nævdal, On the completion of partially given triangular Toeplitz matrices to contractions, SIAM J. Matrix Anal. Appl. 14 (1993), 545-552. MR 94a:47025
  • [Sch] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt, J. Reine Angew. Math. 147 (1917), 205-232.
  • [Ta] S. Takahashi, Extension of the theorems of Carathéodory-Toeplitz-Schur and Pick, Pacific J. Math. 138 (1989), 391-399. MR 90d:30105
  • [Zhu] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), 376-381. MR 95m:47044

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B35, 15A57, 15A60, 47B20, 30D50

Retrieve articles in all journals with MSC (2000): 47B35, 15A57, 15A60, 47B20, 30D50


Additional Information

Muneo Cho
Affiliation: Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
Email: chiyom01@kanagawa-u.ac.jp

Raúl E. Curto
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: curto@math.uiowa.edu

Woo Young Lee
Affiliation: Department of Mathematics, SungKyunKwan University, Suwon 440-746, Korea
Email: wylee@yurim.skku.ac.kr

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06628-5
PII: S 0002-9939(02)06628-5
Keywords: Triangular Toeplitz contractions, hyponormal Toeplitz operators
Received by editor(s): September 7, 2000
Received by editor(s) in revised form: July 2, 2001
Published electronically: May 8, 2002
Additional Notes: The second author’s work was partially supported by NSF research grant DMS-9800931
The third author’s work was partially supported by KOSEF research project No. R01-2000-00003
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society