Twisted homology of symmetric groups

Author:
Stanislaw Betley

Journal:
Proc. Amer. Math. Soc. **130** (2002), 3439-3445

MSC (1991):
Primary 20J06; Secondary 18G99

DOI:
https://doi.org/10.1090/S0002-9939-02-06763-1

Published electronically:
July 2, 2002

MathSciNet review:
1918818

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the homology of symmetric groups with coefficients coming from the functor . We are primarily interested in the limit where . Our main goal is to compare the described above situation with the case of general linear groups.

**[B1]**S. Betley. Calculations in THH-theory.*J. Algebra***180**(1996), 445-458. MR**97a:19002****[B2]**S. Betley. On stable K-theory with twisted coefficients.*Contemporary Math.***199**(1996) 19-29. MR**98a:19002****[B3]**S. Betley. Homology of Gl(R) with coefficients in a functor of finite degree.*J. Algebra***150**(1992) 73-86. MR**93m:20069****[B4]**S. Betley. Stable derived functors, the Steenrod algebra and homological algebra in the category of functors.*Fundamenta Math.***168**(2001) 279-293. MR**2002f:18025****[BP-1]**S. Betley and T. Pirashvili. Twisted (co)homological stability for monoids of endomorphisms.*Math. Ann.***295**(1993), 709-720. MR**94g:18006****[BP-2]**S. Betley and T. Pirashvili. Stable -theory as a derived functor.*J. of Pure and Appl. Alg.***96**(1994) 245-258. MR**96a:19002****[BS]**S. Betley and J. Sominska. New approach to the groups by the homology theory of the category of functors.*J. Pure and App. Alg.***161**(2001) 31-43. MR**2002e:55020****[FFSS]**V. Franjou, E.M. Friedlander, A. Scorichenko and A. Suslin. General linear and functor cohomology over finite fields.*Ann. of Math.***150**(1999) 663-728. MR**2001b:14076****[JP]**M. Jibladze and T. Pirashvili. Cohomology of algebraic theories.*J. Algebra***137**(1991) 253-296. MR**92f:18005****[vdK]**W. van der Kallen. Homology stability for linear groups.*Inventiones Math.***60**(1980) 269-295. MR**82c:18011****[K]**C. Kassel. Stabilisation de la K-theorie algebrique des espaces topologiques.*Ann. Scient. Ec. Norm. Sup.***16**(1983) 123-149. MR**85j:18010****[N]**M. Nakaoka. Decomposition theorem for homology groups of symmetric groups.*Ann. of Math.***71**(1960) 16-42. MR**22:2989****[P1]**T. Pirashvili. Dold-Kan type theorem for -groups.*Math. Ann.***318**(2000) 277-298. MR**2001i:20112****[P2]**T. Pirashvili. Hodge decomposition for higher order Hochschild homology.*Ann. Scient. Ec. Norm. Sup.***33**(2000) 151-179. MR**2001e:19006****[S]**A. Scorichenko. Stable K-theory and functor homology over a ring.*Preprint IAS, 2000*.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20J06,
18G99

Retrieve articles in all journals with MSC (1991): 20J06, 18G99

Additional Information

**Stanislaw Betley**

Affiliation:
Instytut Matematyki, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

Email:
betley@mimuw.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-02-06763-1

Received by editor(s):
October 4, 2000

Published electronically:
July 2, 2002

Additional Notes:
The author was partially supported by the Polish Scientific Grant (KBN) 2 P03A 01113

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2002
American Mathematical Society