On the number of real quadratic fields with class number divisible by 3
Authors:
K. Chakraborty and M. Ram Murty
Journal:
Proc. Amer. Math. Soc. 131 (2003), 4144
MSC (2000):
Primary 11R29; Secondary 11R11
Published electronically:
May 15, 2002
MathSciNet review:
1929021
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We find a lower bound for the number of real quadratic fields whose class groups have an element of order . More precisely, we establish that the number of real quadratic fields whose absolute discriminant is and whose class group has an element of order is improving the existing best known bound of R. Murty.
 1.
N.
C. Ankeny and S.
Chowla, On the divisibility of the class number of quadratic
fields, Pacific J. Math. 5 (1955), 321–324. MR 0085301
(19,18f)
 2.
David A. Cardon and M. Ram Murty: Exponents of class groups of quadratic function fields over finite fields, Canadian Math. Bulletin, 44 (2001), 398407.
 3.
H.
Cohen and H.
W. Lenstra Jr., Heuristics on class groups of number fields,
Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes
in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082
(85j:11144), http://dx.doi.org/10.1007/BFb0099440
 4.
H.
Davenport and H.
Heilbronn, On the density of discriminants of cubic fields.
II, Proc. Roy. Soc. London Ser. A 322 (1971),
no. 1551, 405–420. MR 0491593
(58 #10816)
 5.
P.
Hartung, Proof of the existence of infinitely many imaginary
quadratic fields whose class number is not divisible by 3, J. Number
Theory 6 (1974), 276–278. MR 0352040
(50 #4528)
 6.
Taira
Honda, A few remarks on class numbers of imaginary quadratic number
fields, Osaka J. Math. 12 (1975), 19–21. MR 0387240
(52 #8083)
 7.
M.
Ram Murty, Exponents of class groups of quadratic fields,
Topics in number theory (University Park, PA, 1997) Math. Appl.,
vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 229–239.
MR
1691322 (2000b:11123)
 8.
K.
Soundararajan, Divisibility of class numbers of imaginary quadratic
fields, J. London Math. Soc. (2) 61 (2000),
no. 3, 681–690. MR 1766097
(2001i:11128), http://dx.doi.org/10.1112/S0024610700008887
 9.
T. Nagell: Über die Klassenzahl imaginär quadratischer Zahlkorper: Abh. Math. Sem. Univ. Hamburg, 1 (1922), 140150.
 10.
P.
J. Weinberger, Real quadratic fields with class numbers divisible
by 𝑛, J. Number Theory 5 (1973),
237–241. MR 0335471
(49 #252)
 11.
Yoshihiko
Yamamoto, On unramified Galois extensions of quadratic number
fields, Osaka J. Math. 7 (1970), 57–76. MR 0266898
(42 #1800)
 1.
 N. Ankeny and S. Chowla: On the divisibility of the class numbers of quadratic fields, Pacific Journal of Math., 5(1995), 321324. MR 19:18f
 2.
 David A. Cardon and M. Ram Murty: Exponents of class groups of quadratic function fields over finite fields, Canadian Math. Bulletin, 44 (2001), 398407.
 3.
 H. Cohen and H. W. Lenstra Jr.: Heuristics on class groups of number fields, Springer Lecture Notes, 1068 in Number Theory Noordwijkerhout 1983 Proceedings. MR 85j:11144
 4.
 H. Davenport and H. Heilbronn: On the density of discriminants of cubic fields II, Proc. Royal Soc., A 322 (1971), 405420. MR 58:10816
 5.
 P. Hartung: Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory, 6 (1974), 276278. MR 50:4528
 6.
 T. Honda: A few remarks on class numbers of imaginary quadratic fields, Osaka J. Math., 12 (1975), 1921. MR 52:8083
 7.
 M. Ram Murty: Exponents of class groups of quadratic fields, Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467, Kluwer Acad. Publ., Dordrecht, (1999), 229239. MR 2000b:11123
 8.
 K. Soundararajan: Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc., 61 (2000), no. 2, 681690. MR 2001i:11128
 9.
 T. Nagell: Über die Klassenzahl imaginär quadratischer Zahlkorper: Abh. Math. Sem. Univ. Hamburg, 1 (1922), 140150.
 10.
 P. Weinberger: Real quadratic fields with class numbers divisible by , J. Number Theory, 5 (1973), 237241. MR 49:252
 11.
 Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 5776. MR 42:1800
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11R29,
11R11
Retrieve articles in all journals
with MSC (2000):
11R29,
11R11
Additional Information
K. Chakraborty
Affiliation:
Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Address at time of publication:
HarishChandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, U. P., India
Email:
kalyan@mast.queensu.ca, kalyan@mri.ernet.in
M. Ram Murty
Affiliation:
Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Email:
murty@mast.queensu.ca
DOI:
http://dx.doi.org/10.1090/S0002993902066030
PII:
S 00029939(02)066030
Keywords:
Class group,
real quadratic fields
Received by editor(s):
August 15, 2001
Published electronically:
May 15, 2002
Communicated by:
Dennis A. Hejhal
Article copyright:
© Copyright 2002
American Mathematical Society
