Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterizing nearly simple chain domains


Authors: H. H. Brungs and J. Gräter
Journal: Proc. Amer. Math. Soc. 131 (2003), 1347-1355
MSC (2000): Primary 16L30, 16N60, 16D25; Secondary 06D99.
DOI: https://doi.org/10.1090/S0002-9939-02-06645-5
Published electronically: September 19, 2002
MathSciNet review: 1949863
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: G. Puninski, using model theoretical methods, showed that if a chain domain $R$ is nearly simple, then $Ra+bR = J(R)$ for any nonzero elements $a,b$ in $J(R)$, the Jacobson radical of $R$. Here, an algebraic proof is given for this result, exceptional chain domains are characterized, and it is shown that $V_0(R)$, the lattice generated by all proper nonzero left and right ideals, is a direct product of two linearly ordered sets if $R$ is nearly simple. In a certain sense this property characterizes nearly simple chain domains among all integral domains.


References [Enhancements On Off] (What's this?)

  • 1. H.H. Brungs and J. Gräter, Value Groups and Distributivity, Can. J. Math. 43 (1991), 1150-1160. MR 93a:16016
  • 2. H.H. Brungs, H. Marubayashi and E. Osmanagic, A classification of prime segments in simple artinian rings, Proc. Amer. Math. Soc. 128 (2000), 3167-3175. MR 2001b:16055
  • 3. H.H. Brungs and G. Törner, Chain rings and prime ideals, Arch. Math. 27 (1976), 253-260. MR 54:7537
  • 4. N.I. Dubrovin, The rational closure of group rings of left orderable groups, Mat. Sbornik 184(7) (1993), 3-48. MR 94g:16035
  • 5. J. Gräter, Zur Theorie nicht kommutativer Prüferringe, Archiv der Mathematik 41 (1983), 30-36. MR 85e:16007
  • 6. J. Gräter, On noncommutative Prüfer rings, Archiv der Mathematik 46 (1986), 402-407. MR 87h:16005
  • 7. G. Grätzer, General Lattice Theory, Academic Press (1978). MR 80c:06001b
  • 8. K. Mathiak, Bewertungen nicht kommutativer Körper, J. Algebra 48 (1977), 217-235. MR 58:5614
  • 9. K. Mathiak, Zur Bewertungstheorie nicht kommutativer Körper, J. Algebra 73 (1981), 586-600. MR 83c:12026
  • 10. K. Mathiak, Der Approximationssatz für Bewertungen nicht kommutativer Körper, J. Algebra 76 (1982), 280-295. MR 83m:12044
  • 11. K. Mathiak, Valuations of Skew Fields and Projective Hjelmslev Spaces, LNM 1175, Springer (1986). MR 87g:16002
  • 12. G. Puninski, Some model theory over a nearly simple uniserial domain and a decomposition of serial modules, J. Pure Appl. Algebra 163 (2001), 319-337.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16L30, 16N60, 16D25, 06D99.

Retrieve articles in all journals with MSC (2000): 16L30, 16N60, 16D25, 06D99.


Additional Information

H. H. Brungs
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: hbrungs@math.ualberta.ca

J. Gräter
Affiliation: Institut für Mathematik, Universität Potsdam, Postfach 601553, 14469 Potsdam, Germany
Email: graeter@rz.uni-potsdam.de

DOI: https://doi.org/10.1090/S0002-9939-02-06645-5
Received by editor(s): August 6, 2001
Received by editor(s) in revised form: December 17, 2001
Published electronically: September 19, 2002
Additional Notes: The first author was supported in part by NSERC
Communicated by: Martin Lorenz
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society