Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Leafwise holomorphic functions


Authors: R. Feres and A. Zeghib
Journal: Proc. Amer. Math. Soc. 131 (2003), 1717-1725
MSC (2000): Primary 37C85; Secondary 32A99
DOI: https://doi.org/10.1090/S0002-9939-03-06909-0
Published electronically: January 15, 2003
MathSciNet review: 1955258
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is a well-known and elementary fact that a holomorphic function on a compact complex manifold is necessarily constant. The purpose of the present article is to investigate whether, or to what extent, a similar property holds in the setting of holomorphically foliated spaces.


References [Enhancements On Off] (What's this?)

  • 1. N. A'Campo and M. Burger. Réseaux arithmétiques et commensurateur d'après G. A. Margulis, Invent. Math. 116 (1994) 1-25. MR 96a:22019
  • 2. A. Candel. The Harmonic measures of Lucy Garnett, preprint, 2000.
  • 3. A. Candel and L. Conlon. Foliations I, Graduate Studies in Mathematics, Volume 23, AMS, 2000. MR 2002f:57058
  • 4. D. Cerveau, E. Ghys, N. Sibony, J.C. Yoccoz. Dynamique et Géométrie Complexes, Panoramas et Synthèses, Société Mathématique de France, 1999. MR 2001a:37002
  • 5. A. Connes. A survey of foliations and operator algebras, Proc. Symp. Pure Math., Amer. Math. Soc. (1982) 521-628. MR 84m:58140
  • 6. L. Garnett. Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983), 285-311. MR 84j:58099
  • 7. E. Ghys and P. de la Harpe. Sur les Groups Hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser, Basel, 1990. MR 92f:53050
  • 8. P. Griffiths and J. Harris. Principles of Algebraic Geometry, John Wiley & Sons, 1994. MR 95d:14001
  • 9. A. Haefliger. Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1962) 367-397. MR 32:6487
  • 10. G. Hector and U. Hirsch. Introduction to the Geometric Theory of Foliations, Aspects of Mathematics, 1983, Vieweg. MR 85f:57016
  • 11. K. Kodaira. Complex Manifolds and Deformations of Complex Structures, Springer, 1986. MR 87d:32040
  • 12. G. A. Margulis. Discrete Subgroups of Semisimple Lie Groups, Springer, 1989.
  • 13. Pierre Molino. Riemannian Foliations, Birkhäuser, 1987. MR 89b:53054
  • 14. A. S. Rapinchuk, V. V. Benyash-Krivetz, V. I. Chernousov. Representation varieties of the fundamental groups of compact orientable surfaces, Israel J. Math. 93 (1996) 29-71. MR 98a:57002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37C85, 32A99

Retrieve articles in all journals with MSC (2000): 37C85, 32A99


Additional Information

R. Feres
Affiliation: Department of Mathematics—1146, Washington University, St. Louis, Missouri 63130

A. Zeghib
Affiliation: UMPA - École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

DOI: https://doi.org/10.1090/S0002-9939-03-06909-0
Keywords: Foliated spaces, leafwise holomorphic functions
Received by editor(s): July 14, 2001
Published electronically: January 15, 2003
Communicated by: Michael Handel
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society