-energy integral and harmonic mappings

Author:
Guowu Yao

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2271-2277

MSC (2000):
Primary 58E20; Secondary 30C62

Published electronically:
October 24, 2002

MathSciNet review:
1963777

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we discuss harmonic mappings on the unit disk with respect to any metric by using the -energy integral that was first introduced by Li in 1997 to treat quasiconformal harmonic mappings on the Poincaré disk, instead of the total energy integral. Some basic properties of harmonic mappings are given. Moreover, we give a new proof of the uniqueness theorem of Markovic and Mateljevic, which is more explicit and natural.

**[Ah]**Lars V. Ahlfors,*Lectures on quasiconformal mappings*, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. MR**0200442****[J]**Jürgen Jost,*Harmonic maps between surfaces*, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR**754769****[LV]**O. Lehto and K. I. Virtanen,*Quasiconformal mappings in the plane*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR**0344463****[Li]**Zhong Li,*On the boundary value problem for harmonic maps of the Poincaré disc*, Chinese Sci. Bull.**42**(1997), no. 24, 2025–2045. MR**1641041**, 10.1007/BF02882940**[LT]**Peter Li and Luen-Fai Tam,*Uniqueness and regularity of proper harmonic maps. II*, Indiana Univ. Math. J.**42**(1993), no. 2, 591–635. MR**1237061**, 10.1512/iumj.1993.42.42027**[MM]**V. Marković and M. Mateljević,*A new version of the main inequality and the uniqueness of harmonic maps*, J. Anal. Math.**79**(1999), 315–334. MR**1749316**, 10.1007/BF02788245**[Re]**Edgar Reich,*On the variational principle of Gerstenhaber and Rauch*, Ann. Acad. Sci. Fenn. Ser. A I Math.**10**(1985), 469–475. MR**802510**, 10.5186/aasfm.1985.1052**[RS]**Edgar Reich and Kurt Strebel,*On the Gerstenhaber-Rauch principle*, Israel J. Math.**57**(1987), no. 1, 89–100. MR**882248**, 10.1007/BF02769462**[RS1]**Edgar Reich and Kurt Strebel,*On quasiconformal mappings which keep the boundary points fixed*, Trans. Amer. Math. Soc.**138**(1969), 211–222. MR**0237778**, 10.1090/S0002-9947-1969-0237778-3**[RS2]**Edgar Reich and Kurt Strebel,*Extremal quasiconformal mappings with given boundary values*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR**0361065****[S]**J. H. Sampson,*Some properties and applications of harmonic mappings*, Ann. Sci. École Norm. Sup. (4)**11**(1978), no. 2, 211–228. MR**510549****[SY]**Richard Schoen and Shing Tung Yau,*On univalent harmonic maps between surfaces*, Invent. Math.**44**(1978), no. 3, 265–278. MR**0478219****[We]**Hanbai Wei,*On the uniqueness problem of harmonic quasiconformal mappings*, Proc. Amer. Math. Soc.**124**(1996), no. 8, 2337–2341. MR**1307523**, 10.1090/S0002-9939-96-03178-4**[Ya]**G. W. Yao,*Improved Reich-Strebel inequality and harmonic mappings*, submitted to J. Anal. Math. (2001).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58E20,
30C62

Retrieve articles in all journals with MSC (2000): 58E20, 30C62

Additional Information

**Guowu Yao**

Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China

Email:
wallgreat@lycos.com

DOI:
https://doi.org/10.1090/S0002-9939-02-06757-6

Keywords:
Harmonic mapping,
Main Inequality

Received by editor(s):
February 20, 2002

Published electronically:
October 24, 2002

Communicated by:
Juha M. Heinonen

Article copyright:
© Copyright 2002
American Mathematical Society