Regular components of moduli spaces of stable maps

Author:
Gavril Farkas

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2027-2036

MSC (2000):
Primary 14H10

Published electronically:
November 4, 2002

MathSciNet review:
1963746

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct regular components of the moduli space of stable maps from curves of genus to a product of two projective spaces. These components are generically smooth and have the expected dimension predicted by deformation theory. This result can be seen as a general position theorem for loci in consisting of curves carrying exceptional linear series.

**[ACV]**D. Abramovich, A. Corti, A. Vistoli,*Twisted bundles and admissible covers,*math.AG/0106211 preprint.**[AC]**Enrico Arbarello and Maurizio Cornalba,*Footnotes to a paper of Beniamino Segre: “On the modules of polygonal curves and on a complement to the Riemann existence theorem” (Italian) [Math. Ann. 100 (1928), 537–551; Jbuch 54, 685]*, Math. Ann.**256**(1981), no. 3, 341–362. The number of 𝑔¹_{𝑑}’s on a general 𝑑-gonal curve, and the unirationality of the Hurwitz spaces of 4-gonal and 5-gonal curves. MR**626954**, 10.1007/BF01679702**[ACGH]**E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris,*Geometry of algebraic curves. Vol. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR**770932****[BE]**E. Ballico and Ph. Ellia,*On the existence of curves with maximal rank in 𝑃ⁿ*, J. Reine Angew. Math.**397**(1989), 1–22. MR**993216****[CGGH]**James Carlson, Mark Green, Phillip Griffiths, and Joe Harris,*Infinitesimal variations of Hodge structure. I*, Compositio Math.**50**(1983), no. 2-3, 109–205. MR**720288****[CR]**Mei-Chu Chang and Ziv Ran,*Deformations and smoothing of complete linear systems on reducible curves*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 63–75. MR**927949****[Co]**Marc Coppens,*Some remarks on the schemes 𝑊^{𝑟}_{𝑑}*, Ann. Mat. Pura Appl. (4)**157**(1990), 183–197. MR**1108476**, 10.1007/BF01765318**[CKM]**Marc Coppens, Changho Keem, and Gerriet Martens,*The primitive length of a general 𝑘-gonal curve*, Indag. Math. (N.S.)**5**(1994), no. 2, 145–159. MR**1284560**, 10.1016/0019-3577(94)90022-1**[CM]**M. Coppens and G. Martens,*Linear series on a general 𝑘-gonal curve*, Abh. Math. Sem. Univ. Hamburg**69**(1999), 347–371. MR**1722944**, 10.1007/BF02940885**[FP]**W. Fulton and R. Pandharipande,*Notes on stable maps and quantum cohomology*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR**1492534**, 10.1090/pspum/062.2/1492534**[Fu]**William Fulton,*Hurwitz schemes and irreducibility of moduli of algebraic curves*, Ann. of Math. (2)**90**(1969), 542–575. MR**0260752****[HM]**Joe Harris and David Mumford,*On the Kodaira dimension of the moduli space of curves*, Invent. Math.**67**(1982), no. 1, 23–88. With an appendix by William Fulton. MR**664324**, 10.1007/BF01393371**[Lo]**Angelo Felice Lopez,*On the existence of components of the Hilbert scheme with the expected number of moduli. II*, Comm. Algebra**27**(1999), no. 7, 3485–3493. MR**1695550**, 10.1080/00927879908826640**[Ran]**Ziv Ran,*Deformations of maps*, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 246–253. MR**1023402**, 10.1007/BFb0085936**[Se]**E. Sernesi,*On the existence of certain families of curves*, Invent. Math.**75**(1984), no. 1, 25–57. MR**728137**, 10.1007/BF01403088**[St]**Frauke Steffen,*A generalized principal ideal theorem with an application to Brill-Noether theory*, Invent. Math.**132**(1998), no. 1, 73–89. MR**1618632**, 10.1007/s002220050218

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14H10

Retrieve articles in all journals with MSC (2000): 14H10

Additional Information

**Gavril Farkas**

Affiliation:
Department of Mathematics, University of Michigan, East Hall, 525 East University Avenue, Ann Arbor, Michigan 48109-1109

Email:
gfarkas@umich.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06814-4

Received by editor(s):
October 18, 2000

Received by editor(s) in revised form:
February 26, 2002

Published electronically:
November 4, 2002

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2002
American Mathematical Society