The model category of maps of spaces is not cofibrantly generated

Author:
Boris Chorny

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2255-2259

MSC (2000):
Primary 55U35; Secondary 55P91, 18G55

Published electronically:
February 11, 2003

MathSciNet review:
1963775

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the model category of diagrams of spaces generated by a proper class of orbits is not cofibrantly generated. In particular, the category of maps between spaces may be supplied with a non-cofibrantly generated model structure.

**1.**J. Adámek, H. Herrlich, J. Rosický and W. Tholen,*Weak factorization systems and topological functors*, preprint, 2000.**2.**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR**0365573****3.**B. Chorny,*Localization with respect to a class of maps*, in preparation.**4.**D. Christensen and M. Hovey,*Quillen model structures for relative homological algebra*, preprint, 2001.**5.**Emmanuel Dror Farjoun,*Homotopy and homology of diagrams of spaces*, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 93–134. MR**922924**, 10.1007/BFb0078739**6.**E. Dror Farjoun,*Homotopy theories for diagrams of spaces*, Proc. Amer. Math. Soc.**101**(1987), no. 1, 181–189. MR**897092**, 10.1090/S0002-9939-1987-0897092-6**7.**E. Dror Farjoun and A. Zabrodsky,*Homotopy equivalence between diagrams of spaces*, J. Pure Appl. Algebra**41**(1986), no. 2-3, 169–182. MR**849903**, 10.1016/0022-4049(86)90109-X**8.**Daniel Dugger,*Combinatorial model categories have presentations*, Adv. Math.**164**(2001), no. 1, 177–201. MR**1870516**, 10.1006/aima.2001.2015**9.**Daniel C. Isaksen,*A model structure on the category of pro-simplicial sets*, Trans. Amer. Math. Soc.**353**(2001), no. 7, 2805–2841. MR**1828474**, 10.1090/S0002-9947-01-02722-2**10.**V. Halperin,*Equivariant Localization of Diagrams*, Ph.D. thesis, Hebrew University, Jerusalem, 1998.**11.**Alex Heller,*Homotopy theories*, Mem. Amer. Math. Soc.**71**(1988), no. 383, vi+78. MR**920963**, 10.1090/memo/0383**12.**P.S. Hirschhorn,*Localization of Model Categories*, preprint, April 12, 2000.**13.**Mark Hovey,*Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR**1650134****14.**Saunders MacLane,*Categories for the working mathematician*, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR**0354798****15.**J.H. Smith,*Combinatorial Model Categories*, unpublished.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55U35,
55P91,
18G55

Retrieve articles in all journals with MSC (2000): 55U35, 55P91, 18G55

Additional Information

**Boris Chorny**

Affiliation:
Einstein Institute of Mathematics, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

DOI:
https://doi.org/10.1090/S0002-9939-03-06901-6

Keywords:
Model category,
equivariant homotopy,
non-cofibrantly generated

Received by editor(s):
February 16, 2002

Published electronically:
February 11, 2003

Additional Notes:
The author was a fellow of the Marie Curie Training Site hosted by the Centre de Recerca Matemàtica (Barcelona), grant no. HPMT-CT-2000-00075 of the European Commission.

Communicated by:
Paul Goerss

Article copyright:
© Copyright 2003
American Mathematical Society