Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A strong law of large numbers for generalized random sets from the viewpoint of empirical processes


Authors: Frank N. Proske and Madan L. Puri
Journal: Proc. Amer. Math. Soc. 131 (2003), 2937-2944
MSC (2000): Primary 60D05; Secondary 03E72
DOI: https://doi.org/10.1090/S0002-9939-03-06842-4
Published electronically: January 8, 2003
MathSciNet review: 1974352
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove a strong law of large numbers for Borel measurable nonseparably valued random elements in the case of generalized random sets.


References [Enhancements On Off] (What's this?)

  • 1. Artstein, Z. and Vitale, R.A. (1975). A strong law of large numbers for random compact sets.Ann. Prob. 3, 879-882. MR 52:6825
  • 2. Aubin, J.P. and Frankowska, H. (1990). Set-valued Analysis. Systems & Control: Foundations & Applications, Birkhäuser. MR 91d:49001
  • 3. Chow, Y.S. and Teicher, H. (1978). Probability theory. Springer. MR 80a:60004
  • 4. Debreu, G. (1966). Integration of correspondences. Proc. Fifth Berkeley Symp. Math. Statist. Prob.2, 351-372, University of California Press. MR 37:3835
  • 5. Etemadi, N. (1981). An elementary proof of the strong law of large numbers. Z. Wahrscheinlichkeitstheor. Verw. Geb. 55, 119-122. MR 82b:60027
  • 6. Giné, E., Hahn, G. and Zinn, J. (1983). Limit theorems for random sets. Springer Lecture notes in Math. 990, 112-135. MR 85d:60019
  • 7. Hoffmann-Jørgensen, J. (1985). The law of large numbers for non-measurable and non-separable random elements. Colloque en l'honneur de L. Schwartz, pp. 299-356, Astérisque Vol. 131. Hermann, Paris 1985. MR 88a:60014
  • 8. Klement, E.P., Puri, M.L. and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables, Proc. R. Soc. Lond. A 407, 171-182. MR 88b:60092
  • 9. Kruse, R. (1982). The strong law of large numbers for fuzzy random variables. Inform. Sci. 28, 233-241. MR 84k:60046
  • 10. Proske, F.N. (1997). Limit theorems for fuzzy random variables. Ph.D. Thesis, Ulm University, Germany.
  • 11. Proske, F.N. and Puri, M.L. (2002). Central Limit Theorem for Banach Space valued fuzzy random variables. Proc. Amer. Math. Soc. 130, 1493-1501.
  • 12. Puri, M.L. and Ralescu, D.A. (1983). Differentials of fuzzy functions, J. Math. Anal. Appl. 91, 552-558. MR 85c:26014
  • 13. -(1985). Limit theorems for random compact sets in Banach spaces, Math. Proc. Cam. Phil. Soc. 97, 151-158. MR 86c:60024
  • 14. -(1986). Fuzzy random variables. J. Math. Anal. Appl. 114, 409-422. MR 87f:03159
  • 15. Talagrand, M. (1987). The Glivenko-Cantelli problem. Ann. Prob. 15, 837-870. MR 88h:60012
  • 16. Zadeh, L.A. (1965). Fuzzy Sets, Information and Control 8, 338-353. MR 36:2509

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60D05, 03E72

Retrieve articles in all journals with MSC (2000): 60D05, 03E72


Additional Information

Frank N. Proske
Affiliation: Abt. Math. III, Universität Ulm, 89069 Ulm, Germany
Address at time of publication: Department of Mathematics, University of Oslo, 1053 Blindern, 0316 Oslo, Norway
Email: frproske@metronet.de, proske@math.uio.no

Madan L. Puri
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: puri@indiana.edu

DOI: https://doi.org/10.1090/S0002-9939-03-06842-4
Keywords: Random set, fuzzy set, fuzzy random variable, embedding, Hausdorff distance, empirical process, strong law of large numbers.
Received by editor(s): March 12, 2002
Received by editor(s) in revised form: April 11, 2002
Published electronically: January 8, 2003
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society