The nucleus for restricted Lie algebras

Authors:
David J. Benson and Daniel K. Nakano

Journal:
Proc. Amer. Math. Soc. **131** (2003), 3395-3405

MSC (2000):
Primary 20G10, 20G05

Published electronically:
March 25, 2003

MathSciNet review:
1990628

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The nucleus was a concept first developed in the cohomology theory for finite groups. In this paper the authors investigate the nucleus for restricted Lie algebras. The nucleus is explicitly described for several important classes of Lie algebras.

**[BN]**Christopher P. Bendel and Daniel K. Nakano,*Complexes and vanishing of cohomology for group schemes*, J. Algebra**214**(1999), no. 2, 668–713. MR**1680605**, 10.1006/jabr.1998.7711**[Ben1]**D. J. Benson,*Representations and cohomology. II*, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR**1156302****[Ben2]**D. J. Benson,*Cohomology of modules in the principal block of a finite group*, New York J. Math.**1**(1994/95), 196–205, electronic. MR**1362976****[Ben3]**D. J. Benson, The nucleus, and extensions between modules for a finite group,*Representations of Algebras*, Proceedings of the Ninth International Conference (Beijing 2000), Beijing Normal University Press, 2002.**[BCRi1]**D. J. Benson, Jon F. Carlson, and J. Rickard,*Complexity and varieties for infinitely generated modules. II*, Math. Proc. Cambridge Philos. Soc.**120**(1996), no. 4, 597–615. MR**1401950**, 10.1017/S0305004100001584**[BCRi2]**D. J. Benson, Jon F. Carlson, and Jeremy Rickard,*Thick subcategories of the stable module category*, Fund. Math.**153**(1997), no. 1, 59–80. MR**1450996****[BCR]**D. J. Benson, J. F. Carlson, and G. R. Robinson,*On the vanishing of group cohomology*, J. Algebra**131**(1990), no. 1, 40–73. MR**1054998**, 10.1016/0021-8693(90)90165-K**[C1]**Jon F. Carlson,*Varieties for cohomology with twisted coefficients*, Acta Math. Sin. (Engl. Ser.)**15**(1999), no. 1, 81–92. MR**1701134**, 10.1007/s10114-999-0061-9**[C2]**Jon F. Carlson,*The thick subcategory generated by the trivial module*, Infinite length modules (Bielefeld, 1998) Trends Math., Birkhäuser, Basel, 2000, pp. 285–296. MR**1789221****[CR]**Jon F. Carlson and Geoffrey R. Robinson,*Varieties and modules with vanishing cohomology*, Math. Proc. Cambridge Philos. Soc.**116**(1994), no. 2, 245–251. MR**1281544**, 10.1017/S0305004100072558**[CM]**David H. Collingwood and William M. McGovern,*Nilpotent orbits in semisimple Lie algebras*, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR**1251060****[CNP]**Jon F. Carlson, Daniel K. Nakano, and Karl M. Peters,*On the vanishing of extensions of modules over reduced enveloping algebras*, Math. Ann.**302**(1995), no. 3, 541–560. MR**1339926**, 10.1007/BF01444507**[FP1]**Eric M. Friedlander and Brian J. Parshall,*Support varieties for restricted Lie algebras*, Invent. Math.**86**(1986), no. 3, 553–562. MR**860682**, 10.1007/BF01389268**[FP2]**Eric M. Friedlander and Brian J. Parshall,*Geometry of 𝑝-unipotent Lie algebras*, J. Algebra**109**(1987), no. 1, 25–45. MR**898334**, 10.1016/0021-8693(87)90161-X**[FS]**Eric M. Friedlander and Andrei Suslin,*Cohomology of finite group schemes over a field*, Invent. Math.**127**(1997), no. 2, 209–270. MR**1427618**, 10.1007/s002220050119**[Hum]**James E. Humphreys,*Conjugacy classes in semisimple algebraic groups*, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR**1343976****[Jan]**Jens Carsten Jantzen,*Representations of algebraic groups*, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR**899071****[NPV]**Daniel K. Nakano, Brian J. Parshall, and David C. Vella,*Support varieties for algebraic groups*, J. Reine Angew. Math.**547**(2002), 15–49. MR**1900135**, 10.1515/crll.2002.049**[Qu]**Daniel Quillen,*The spectrum of an equivariant cohomology ring. I, II*, Ann. of Math. (2)**94**(1971), 549–572; ibid. (2) 94 (1971), 573–602. MR**0298694****[SFB1]**Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel,*Infinitesimal 1-parameter subgroups and cohomology*, J. Amer. Math. Soc.**10**(1997), no. 3, 693–728. MR**1443546**, 10.1090/S0894-0347-97-00240-3**[SFB2]**Andrei Suslin, Eric M. Friedlander, and Christopher P. Bendel,*Support varieties for infinitesimal group schemes*, J. Amer. Math. Soc.**10**(1997), no. 3, 729–759. MR**1443547**, 10.1090/S0894-0347-97-00239-7

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20G10,
20G05

Retrieve articles in all journals with MSC (2000): 20G10, 20G05

Additional Information

**David J. Benson**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Email:
djb@byrd.math.uga.edu

**Daniel K. Nakano**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Email:
nakano@math.uga.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-06939-9

Received by editor(s):
February 20, 2002

Received by editor(s) in revised form:
June 20, 2002

Published electronically:
March 25, 2003

Additional Notes:
The research of the first author was partially supported by NSF grant DMS-9988110

The research of the second author was partially supported by NSF grant DMS-0102225

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society