The nucleus for restricted Lie algebras
Authors:
David J. Benson and Daniel K. Nakano
Journal:
Proc. Amer. Math. Soc. 131 (2003), 33953405
MSC (2000):
Primary 20G10, 20G05
Published electronically:
March 25, 2003
MathSciNet review:
1990628
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The nucleus was a concept first developed in the cohomology theory for finite groups. In this paper the authors investigate the nucleus for restricted Lie algebras. The nucleus is explicitly described for several important classes of Lie algebras.
 [BN]
Christopher
P. Bendel and Daniel
K. Nakano, Complexes and vanishing of cohomology for group
schemes, J. Algebra 214 (1999), no. 2,
668–713. MR 1680605
(2001a:16015), http://dx.doi.org/10.1006/jabr.1998.7711
 [Ben1]
D.
J. Benson, Representations and cohomology. II, Cambridge
Studies in Advanced Mathematics, vol. 31, Cambridge University Press,
Cambridge, 1991. Cohomology of groups and modules. MR 1156302
(93g:20099)
 [Ben2]
D.
J. Benson, Cohomology of modules in the principal block of a finite
group, New York J. Math. 1 (1994/95), 196–205,
electronic. MR
1362976 (96h:20095)
 [Ben3]
D. J. Benson, The nucleus, and extensions between modules for a finite group, Representations of Algebras, Proceedings of the Ninth International Conference (Beijing 2000), Beijing Normal University Press, 2002.
 [BCRi1]
D.
J. Benson, Jon
F. Carlson, and J.
Rickard, Complexity and varieties for infinitely generated modules.
II, Math. Proc. Cambridge Philos. Soc. 120 (1996),
no. 4, 597–615. MR 1401950
(97f:20008), http://dx.doi.org/10.1017/S0305004100001584
 [BCRi2]
D.
J. Benson, Jon
F. Carlson, and Jeremy
Rickard, Thick subcategories of the stable module category,
Fund. Math. 153 (1997), no. 1, 59–80. MR 1450996
(98g:20021)
 [BCR]
D.
J. Benson, J.
F. Carlson, and G.
R. Robinson, On the vanishing of group cohomology, J. Algebra
131 (1990), no. 1, 40–73. MR 1054998
(91c:20073), http://dx.doi.org/10.1016/00218693(90)90165K
 [C1]
Jon
F. Carlson, Varieties for cohomology with twisted
coefficients, Acta Math. Sin. (Engl. Ser.) 15 (1999),
no. 1, 81–92. MR 1701134
(2000f:20087), http://dx.doi.org/10.1007/s1011499900619
 [C2]
Jon
F. Carlson, The thick subcategory generated by the trivial
module, Infinite length modules (Bielefeld, 1998) Trends Math.,
Birkhäuser, Basel, 2000, pp. 285–296. MR 1789221
(2001k:20005)
 [CR]
Jon
F. Carlson and Geoffrey
R. Robinson, Varieties and modules with vanishing cohomology,
Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2,
245–251. MR 1281544
(95c:20073), http://dx.doi.org/10.1017/S0305004100072558
 [CM]
David
H. Collingwood and William
M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van
Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York,
1993. MR
1251060 (94j:17001)
 [CNP]
Jon
F. Carlson, Daniel
K. Nakano, and Karl
M. Peters, On the vanishing of extensions of modules over reduced
enveloping algebras, Math. Ann. 302 (1995),
no. 3, 541–560. MR 1339926
(96f:17029), http://dx.doi.org/10.1007/BF01444507
 [FP1]
Eric
M. Friedlander and Brian
J. Parshall, Support varieties for restricted Lie algebras,
Invent. Math. 86 (1986), no. 3, 553–562. MR 860682
(88f:17018), http://dx.doi.org/10.1007/BF01389268
 [FP2]
Eric
M. Friedlander and Brian
J. Parshall, Geometry of 𝑝unipotent Lie algebras, J.
Algebra 109 (1987), no. 1, 25–45. MR 898334
(89a:17017), http://dx.doi.org/10.1016/00218693(87)90161X
 [FS]
Eric
M. Friedlander and Andrei
Suslin, Cohomology of finite group schemes over a field,
Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618
(98h:14055a), http://dx.doi.org/10.1007/s002220050119
 [Hum]
James
E. Humphreys, Conjugacy classes in semisimple algebraic
groups, Mathematical Surveys and Monographs, vol. 43, American
Mathematical Society, Providence, RI, 1995. MR 1343976
(97i:20057)
 [Jan]
Jens
Carsten Jantzen, Representations of algebraic groups, Pure and
Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987.
MR 899071
(89c:20001)
 [NPV]
Daniel
K. Nakano, Brian
J. Parshall, and David
C. Vella, Support varieties for algebraic groups, J. Reine
Angew. Math. 547 (2002), 15–49. MR 1900135
(2003b:20063), http://dx.doi.org/10.1515/crll.2002.049
 [Qu]
Daniel
Quillen, The spectrum of an equivariant cohomology ring. I,
II, Ann. of Math. (2) 94 (1971), 549–572; ibid.
(2) 94 (1971), 573–602. MR 0298694
(45 #7743)
 [SFB1]
Andrei
Suslin, Eric
M. Friedlander, and Christopher
P. Bendel, Infinitesimal 1parameter subgroups
and cohomology, J. Amer. Math. Soc.
10 (1997), no. 3,
693–728. MR 1443546
(98h:14055b), http://dx.doi.org/10.1090/S0894034797002403
 [SFB2]
Andrei
Suslin, Eric
M. Friedlander, and Christopher
P. Bendel, Support varieties for infinitesimal
group schemes, J. Amer. Math. Soc.
10 (1997), no. 3,
729–759. MR 1443547
(98h:14055c), http://dx.doi.org/10.1090/S0894034797002397
 [BN]
 C. P. Bendel and D. K. Nakano, Complexes and vanishing of cohomology for group schemes, J. Algebra 214 (1999), 668713. MR 2001a:16015
 [Ben1]
 D. J. Benson, Representations and cohomology, II, Cambridge Univ. Press, 1991. MR 93g:20099
 [Ben2]
 D. J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1 (1995), 196205. MR 96h:20095
 [Ben3]
 D. J. Benson, The nucleus, and extensions between modules for a finite group, Representations of Algebras, Proceedings of the Ninth International Conference (Beijing 2000), Beijing Normal University Press, 2002.
 [BCRi1]
 D. J. Benson, J. F. Carlson and J. Rickard, Complexity and varieties for infinitely generated modules, II, Math. Proc. Camb. Phil. Soc. 120 (1996), 597615. MR 97f:20008
 [BCRi2]
 D. J. Benson, J. F. Carlson and J. Rickard, Thick subcategories of the stable module category, Fundamenta Mathematicae 153 (1997), 5980. MR 98g:20021
 [BCR]
 D. J. Benson, J. F. Carlson and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), 4073. MR 91c:20073
 [C1]
 J. F. Carlson, Varieties for cohomology with twisted coefficients, Acta Math. Sin. (Engl. Ser.) 15 (1999), 8192. MR 2000f:20087
 [C2]
 J. F. Carlson, The thick subcategory generated by the trivial module, Infinite Length Modules, ed. Henning Krause and Claus Michael Ringel, Trends in Mathematics, Birkhäuser Verlag (2000), 285296. MR 2001k:20005
 [CR]
 J. F. Carlson and G. R. Robinson, Varieties and modules with vanishing cohomology, Math. Proc. Camb. Phil. Soc. 116 (1994), 245251. MR 95c:20073
 [CM]
 D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, 1993. MR 94j:17001
 [CNP]
 J. F. Carlson, D. K. Nakano and K. M. Peters, On the vanishing of extensions of modules over reduced enveloping algebras, Math. Annalen 302 (1995), 541560. MR 96f:17029
 [FP1]
 E. M. Friedlander and B. J. Parshall, Support varieties for restricted Lie algebras, Invent. Math. 86 (1986), 553562. MR 88f:17018
 [FP2]
 E. M. Friedlander and B. J. Parshall, Geometry of unipotent Lie algebras, J. Algebra 109 (1987), 2545. MR 89a:17017
 [FS]
 E. M. Friedlander and A. A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209270. MR 98h:14055a
 [Hum]
 J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, American Mathematical Society (Mathematical Surveys and Monographs), 1995. MR 97i:20057
 [Jan]
 J. C. Jantzen, Representations of algebraic groups, Academic Press, 1987. MR 89c:20001
 [NPV]
 D. K. Nakano, B. J. Parshall and D. C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002), 1549. MR 2003b:20063
 [Qu]
 D. G. Quillen, The spectrum of an equivariant cohomology ring I, II, Ann. of Math. 94 (1971), 549572, 573602. MR 45:7743
 [SFB1]
 A. A. Suslin, E. M. Friedlander and C. P. Bendel, Infinitesimal oneparameter subgroups and cohomology, Jour. AMS. 10 (1997), 693728. MR 98h:14055b
 [SFB2]
 A. A. Suslin, E. M. Friedlander and C. P. Bendel, Support varieties for infinitesimal group schemes, Jour. AMS. 10 (1997), 729759. MR 98h:14055c
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
20G10,
20G05
Retrieve articles in all journals
with MSC (2000):
20G10,
20G05
Additional Information
David J. Benson
Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email:
djb@byrd.math.uga.edu
Daniel K. Nakano
Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email:
nakano@math.uga.edu
DOI:
http://dx.doi.org/10.1090/S0002993903069399
PII:
S 00029939(03)069399
Received by editor(s):
February 20, 2002
Received by editor(s) in revised form:
June 20, 2002
Published electronically:
March 25, 2003
Additional Notes:
The research of the first author was partially supported by NSF grant DMS9988110
The research of the second author was partially supported by NSF grant DMS0102225
Communicated by:
Stephen D. Smith
Article copyright:
© Copyright 2003
American Mathematical Society
