Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positive harmonic functions of finite order in a Denjoy type domain


Author: Hiroaki Aikawa
Journal: Proc. Amer. Math. Soc. 131 (2003), 3873-3881
MSC (2000): Primary 31A05, 31B05, 31B25
DOI: https://doi.org/10.1090/S0002-9939-03-06977-6
Published electronically: April 24, 2003
MathSciNet review: 1999936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a Denjoy type domain and prove that the dimension of the cone of positive harmonic functions of finite order in the domain with vanishing boundary values is one or two, whenever the boundary is included in a certain set.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions, Math. Ann. 312 (1998), no. 2, 289-318. MR 99m:35042
  • 2. A. Ancona, Une propriété de la compactification de Martin d'un domaine euclidien, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 71-90. MR 81f:31013
  • 3. -, Sur la frontière de Martin des domaines de Denjoy, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 2, 259-271. MR 92e:31001
  • 4. D. H. Armitage and S. J. Gardiner, Classical potential theory, Springer-Verlag London Ltd., London, 2001. MR 2001m:31001
  • 5. M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in ${\mathbf{R}}\sp{n}$, Ark. Mat. 18 (1980), no. 1, 53-72. MR 82h:31004
  • 6. N. Chevallier, Frontière de Martin d'un domaine de ${\mathbf{R}}\sp n$ dont le bord est inclus dans une hypersurface lipschitzienne, Ark. Mat. 27 (1989), no. 1, 29-48. MR 91e:31024
  • 7. M. C. Cranston and T. S. Salisbury, Martin boundaries of sectorial domains, Ark. Mat. 31 (1993), no. 1, 27-49. MR 94k:31002
  • 8. S. Friedland and W. K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helv. 51 (1976), no. 2, 133-161. MR 54:568
  • 9. S. J. Gardiner, Minimal harmonic functions on Denjoy domains, Proc. Amer. Math. Soc. 107 (1989), no. 4, 963-970. MR 90c:31013
  • 10. W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, Academic Press, London, 1976. MR 57:665
  • 11. A. Lömker, Martin boundaries of quasi-sectorial domains, Potential Anal. 13 (2000), no. 1, 11-67. MR 2002k:31023
  • 12. P. Poggi-Corradini, On the failure of a generalized Denjoy-Wolff theorem, Conform. Geom. Dyn. 6 (2002), 13-32 (electronic). MR 2003a:30031
  • 13. S. Segawa, Martin boundaries of Denjoy domains, Proc. Amer. Math. Soc. 103 (1988), no. 1, 177-183. MR 89m:31008
  • 14. -, Martin boundaries of Denjoy domains and quasiconformal mappings, J. Math. Kyoto Univ. 30 (1990), no. 2, 297-316. MR 91j:30034
  • 15. E. Sperner, Jr., Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134 (1973), 317-327. MR 49:5310

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A05, 31B05, 31B25

Retrieve articles in all journals with MSC (2000): 31A05, 31B05, 31B25


Additional Information

Hiroaki Aikawa
Affiliation: Department of Mathematics, Shimane University, Matsue 690-8504, Japan
Email: haikawa@math.shimane-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-03-06977-6
Keywords: Denjoy type domain, harmonic function, finite order
Received by editor(s): May 31, 2002
Received by editor(s) in revised form: August 6, 2002
Published electronically: April 24, 2003
Additional Notes: This work was supported in part by Grant-in-Aid for Scientific Research (A) (No. 11304008), (B) (No. 12440040) and Exploratory Research (No. 13874023) Japan Society for the Promotion of Science.
Dedicated: Dedicated to Professor Kaoru Hatano on the occasion of his 60th birthday
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society