Broué's abelian defect group conjecture for alternating groups

Author:
Andrei Marcus

Journal:
Proc. Amer. Math. Soc. **132** (2004), 7-14

MSC (2000):
Primary 20C20; Secondary 20C30, 16W50

DOI:
https://doi.org/10.1090/S0002-9939-03-07214-9

Published electronically:
August 12, 2003

MathSciNet review:
2021243

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish Broué's abelian defect group conjecture for the alternating groups, using the Chuang-Rouquier theorem (proving this for the symmetric groups) and a descent result.

**1.**J. Chuang,*The derived categories of some blocks of symmetric groups and a conjecture of Broué*, J. Algebra**217**(1999), 114-155. MR**2001a:20024****2.**J. Chuang and R. Kessar,*Symmetric groups, wreath products, Morita equivalences, and Broué's abelian defect group conjecture*, Bull. London Math. Soc.**34**(2002), 174-184. MR**2002m:20016****3.**J. Chuang and R. Rouquier, Talks given at the Durham Symposium on Representations of Finite Groups and Related Algebras (1-11 July 2002) .**4.**E. C. Dade,*Another way to count characters*, J. Reine Angew. Math.**510**(1999), 1-55. MR**2000e:20017****5.**P. Fong and M. E. Harris,*On perfect isometries and isotypies in alternating groups*, Trans. Amer. Math. Soc.**349**(1997), 3469-3516. MR**97k:20009****6.**A. Marcus,*On equivalences between blocks of group algebras: reduction to the simple components*, J. Algebra**184**(1996), 372-396. MR**97m:20012****7.**A. Marcus,*Equivalences induced by graded bimodules*, Comm. Algebra**26**(1998), 713-731. MR**99a:16039****8.**A. Marcus,*Tilting complexes for group graded algebras*, J. Group Theory**6**(2003), 175-193.**9.**T. Okuyama,*Some examples of derived equivalent blocks of finite groups*, preprint 1998.**10.**J. Rickard, MSRI talk, Berkeley, November 6, 1990.**11.**R. Rouquier,*Isométries parfaites dans les blocs à défaut abélien des groupes symétriques et sporadiques*, J. Algebra**168**(1994), 648-694. MR**95h:20015****12.**R. Rouquier,*The derived category of blocks with cyclic defect groups*, in S. König and A. Zimmermann, Derived Equivalences for Group Rings, Springer-Verlag, Berlin, 1998, pp. 199-220.**13.**R. Rouquier,*Block theory via stable and Rickard equivalences*, Modular representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin, 2001, pp. 101-146. MR**2003g:20018****14.**J. Scopes,*Cartan matrices and Morita equivalence for blocks of the symmetric groups*, J. Algebra**142**(1991), 441-455. MR**92h:20023**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20C20,
20C30,
16W50

Retrieve articles in all journals with MSC (2000): 20C20, 20C30, 16W50

Additional Information

**Andrei Marcus**

Affiliation:
“Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Str. Mihail Kogălniceanu nr. 1, RO-40084 Cluj-Napoca, Romania

Email:
marcus@math.ubbcluj.ro

DOI:
https://doi.org/10.1090/S0002-9939-03-07214-9

Keywords:
Symmetric groups,
alternating groups,
blocks,
abelian defect groups,
Rickard equivalences,
splendid tilting complex,
group graded algebras

Received by editor(s):
August 15, 2002

Published electronically:
August 12, 2003

Additional Notes:
The author was supported by a Fulbright fellowship.

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society