Bundles with periodic maps and mod Chern polynomial
Author:
Jan Jaworowski
Journal:
Proc. Amer. Math. Soc. 132 (2004), 12231228
MSC (2000):
Primary 55R91, 55R40; Secondary 55M20
Published electronically:
August 20, 2003
MathSciNet review:
2045442
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose that is a vector bundle with a linear periodic map of period ; the map is assumed free on the outside of the section. A polynomial , called a mod Chern polynomial of , is defined. It is analogous to the StiefelWhitney polynomial defined by Dold for real vector bundles with the antipodal involution. The mod Chern polynomial can be used to measure the size of the periodic coincidence set for fibre preserving maps of the unit sphere bundle of into another vector bundle.
 1.
J.
E. Connett, On the cohomology of fixedpoint sets and
coincidencepoint sets, Indiana Univ. Math. J. 24
(1974/75), 627–634. MR 0365553
(51 #1805)
 2.
Albrecht
Dold, Parametrized BorsukUlam theorems, Comment. Math. Helv.
63 (1988), no. 2, 275–285. MR 948782
(89h:55001), http://dx.doi.org/10.1007/BF02566767
 3.
J. Jaworowski, Fibre preserving involutions and the kernel of the derivative (preprint), Forschungsinstitut fuer Mathematik ETH Zuerich, August, 1980.
 4.
Jan
Jaworowski, Fibre preserving maps of sphere bundles into vector
space bundles, Fixed point theory (Sherbrooke, Que., 1980) Lecture
Notes in Math., vol. 886, Springer, BerlinNew York, 1981,
pp. 154–162. MR 643004
(83a:55002)
 5.
Jan
Jaworowski, The index of free circle actions in lens spaces,
Proceedings of the Janos Bolyai Mathematical Society 8th International
Topology Conference (Gyula, 1998), 2002, pp. 125–129. MR 1921653
(2003g:57057), http://dx.doi.org/10.1016/S01668641(01)001754
 6.
John
W. Milnor and James
D. Stasheff, Characteristic classes, Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of
Mathematics Studies, No. 76. MR 0440554
(55 #13428)
 7.
Robert
M. Switzer, Algebraic topology—homotopy and homology,
SpringerVerlag, New YorkHeidelberg, 1975. Die Grundlehren der
mathematischen Wissenschaften, Band 212. MR 0385836
(52 #6695)
 1.
 J. E. Connett, On the cohomology of fixedpoint sets and coincidencepoint sets,, Indiana Univ. Math. J. 24 (197475), 627634. MR 51:1805
 2.
 A. Dold, Parametrized BorsukUlam theorems, Comm. Math. Helv. 63 (1988), 275285. MR 89h:55001
 3.
 J. Jaworowski, Fibre preserving involutions and the kernel of the derivative (preprint), Forschungsinstitut fuer Mathematik ETH Zuerich, August, 1980.
 4.
 J. Jaworowski, Fibre preserving maps of sphere bundles into vector space bundles, Lecture Notes in Mathematics 886, SpringerVerlag, New York, 1981, pp. 143150. MR 83a:55002
 5.
 J. Jaworowski, The Index of Free Circle Actions in Lens Spaces, Topology and its Appl. 123 (2002), 125129. MR 2003g:57057
 6.
 J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Math. Studies 76, Princeton University Press, Princeton, NJ, 1974. MR 55:13428
 7.
 R. M. Switzer, Algebraic Topology  Homotopy and Homology, Grundlehren der mathematischen Wissenschaften, Band 212, SpringerVerlag, BerlinHeidelbergNew York, 1975. MR 52:6695
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
55R91,
55R40,
55M20
Retrieve articles in all journals
with MSC (2000):
55R91,
55R40,
55M20
Additional Information
Jan Jaworowski
Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 474055701
Email:
jaworows@indiana.edu
DOI:
http://dx.doi.org/10.1090/S0002993903071685
PII:
S 00029939(03)071685
Keywords:
Periodic map,
fibre preserving map,
complex structure,
Chern classes,
lens space,
Chern polynomial,
coincidence set
Received by editor(s):
August 7, 2002
Received by editor(s) in revised form:
November 22, 2002
Published electronically:
August 20, 2003
Communicated by:
Paul Goerss
Article copyright:
© Copyright 2003
American Mathematical Society
