Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

New transformations for Painlevé's third transcendent


Author: N. S. Witte
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1649-1658
MSC (2000): Primary 34M55, 33E17; Secondary 20F55
DOI: https://doi.org/10.1090/S0002-9939-04-07087-X
Published electronically: January 27, 2004
MathSciNet review: 2051125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present transformations relating the third transcendent of Painlevé with parameter sets located at the corners of the Weyl chamber for the symmetry group of the system, the affine Weyl group of the root system $B^{(1)}_2 $, to those at the origin. This transformation entails a scaling of the independent variable, and implies additive identities for the canonical Hamiltonians and product identities for the $\tau$-functions with these parameter sets.


References [Enhancements On Off] (What's this?)

  • 1. H. Airault, Rational solutions of Painlevé equations, Stud. Appl. Math. 61 (1979), 31-53. MR 80e:58005
  • 2. L. A. Bordag and A. V. Kitaev, Transformations of the solutions of the third and of the fifth Painlevé equations and its partial solutions, Joint Inst. Nuclear Res., Dubna, 1985, R5-85-740. MR 88h:34004
  • 3. A. S. Fokas and M. J. Ablowitz, On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033-2042. MR 84b:34004
  • 4. P. J. Forrester and N. S. Witte, Application of the $\tau$-function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Commun. Math. Phys. 219 (2001), 357-398. MR 2003a:82031
  • 5. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l`intégrale générale est a points critiques fixes, Acta Math. 33 (1909), 1-55.
  • 6. P. R. Gordoa, N. Joshi, and A. Pickering, Mappings preserving locations of movable poles. II. The third and fifth Painlevé equations, Nonlinearity 14 (2001), no. 3, 567-582. MR 2002b:34134
  • 7. P. R. Gordoa, N. Joshi, and A. Pickering, Truncation-type methods and Bäcklund transformations for ordinary differential equations: the third and fifth Painlevé equations, Glasg. Math. J. 43A (2001), 23-32, Integrable systems: linear and nonlinear dynamics (Islay, 1999). MR 2002h:34189
  • 8. V. I. Gromak, The solutions of Painlevé's third equation, Differencial'nye Uravnenija 9 (1973), 2082-2083, 2118; translation in Differ. Equ. 9 (1973), 1599-1600. MR 49:5434
  • 9. V. I. Gromak, On the theory of Painlevé's equations, Differencial'nye Uravnenija 11 (1975), 373-376, 398; translation in Differ. Equ. 11 (1975), 285-287. MR 51:13321
  • 10. V. I. Gromak, The solutions of Painlevé's fifth equation, Differencial'nye Uravnenija 12 (1976), 740-742, 775; translation in Differ. Equ. 12 (1976), 519-521. MR 55:3377
  • 11. V. I. Gromak, Reducibility of the Painlevé equations, Differencial'nye Uravnenija 20 (1984), 1674-1683; translation in Differ. Equ. 20 (1984), 1191-1198. MR 86a:34015
  • 12. V. I. Gromak, Bäcklund transformations of Painlevé equations and their applications, The Painlevé Property: One Century later (R. Conte, ed.), CRM Series in Mathematical Physics, Springer-Verlag, New York, 1999, pp. 687-734. MR 2000m:34011
  • 13. V. I. Gromak and G. V. Filipuk, On functional relations between solutions of the fifth Painlevé equation, Differencial'nye Uravnenija 37 (2001), 586-591, 717; translation in Differ. Equ. 37 (2001), 614-620. MR 2002f:34219
  • 14. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada, Determinant formulas for the Toda and discrete Toda equations, Funkcialaj Ekvacioj 44 (2001), 291-307, solv-int/9908007. MR 2002h:37140
  • 15. N. A. Lukasevic, On the theory of Painlevé's third equation, Differencial'nye Uravnenija 3 (1967), 1913-1923; translation in Differ. Equ. 3 (1967), 994-999. MR 37:5451
  • 16. E. L. Mansfield and H. N. Webster, On one-parameter families of Painlevé III, Studies Appl. Math. 101 (1998), 321-341. MR 99g:34025
  • 17. A. E. Milne, P. A. Clarkson, and A. P. Bassom, Bäcklund transformations and solution hierarchies for the third Painlevé equation, Stud. Appl. Math. 98 (1997), no. 2, 139-194. MR 98b:34023
  • 18. Y. Murata, Classical solutions of the third Painlevé equation, Nagoya Math. J. 139 (1995), 37-65. MR 96h:34016
  • 19. M. Noumi, Painlevé equations: An introduction from the symmetric point of view, Asakura Shoten Publishing, Tokyo, 2000, in Japanese.
  • 20. K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, ${P}\sb {{{II}}}$ and ${P}\sb {{ {IV}}}$, Math. Ann. 275 (1986), no. 2, 221-255. MR 88m:58064
  • 21. K. Okamoto, Studies on the Painlevé equations. IV. Third Painlevé equation ${P}\sb {{{III}}}$, Funkcial. Ekvac. 30 (1987), no. 2-3, 305-332. MR 88m:58065
  • 22. P. Painlevé, Sur les équations différentielles du second ordre et d'ordre supérieur dont l`intégrale générale est uniforme, Acta Math. 25 (1902), 1-85.
  • 23. H. Umemura and H. Watanabe, Solutions of the third Painlevé equation. I, Nagoya Math. J. 151 (1998), 1-24. MR 99k:34016
  • 24. N. S. Witte, Gap probabilities for double intervals in Hermitian random matrix ensembles as $ \tau $-functions - the Bessel kernel case, in preparation, 2001.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34M55, 33E17, 20F55

Retrieve articles in all journals with MSC (2000): 34M55, 33E17, 20F55


Additional Information

N. S. Witte
Affiliation: Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
Email: N.Witte@ms.unimelb.edu.au

DOI: https://doi.org/10.1090/S0002-9939-04-07087-X
Keywords: Painlev\'e equations, B\"acklund transformations
Received by editor(s): January 26, 2002
Received by editor(s) in revised form: June 1, 2002
Published electronically: January 27, 2004
Communicated by: Mark J. Ablowitz
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society