Positive ternary quadratic forms with finitely many exceptions
Authors:
Wai Kiu Chan and ByeongKweon Oh
Translated by:
Journal:
Proc. Amer. Math. Soc. 132 (2004), 15671573
MSC (2000):
Primary 11E12, 11E20
Published electronically:
January 27, 2004
MathSciNet review:
2051115
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An integral quadratic form is said to be almost regular if globally represents all but finitely many integers that are represented by the genus of . In this paper, we study and characterize all almost regular positive definite ternary quadratic forms.
 1.
W. K. Chan and A. G. Earnest, Discriminant bounds for spinor regular ternary quadratic lattices, submitted.
 2.
W. K. Chan and B.K. Oh, Finiteness theorems for positive definite regular quadratic forms, Trans. Amer. Math. Soc., 355 (2003), 23852396.
 3.
William
Duke and Rainer
SchulzePillot, Representation of integers by positive ternary
quadratic forms and equidistribution of lattice points on ellipsoids,
Invent. Math. 99 (1990), no. 1, 49–57. MR 1029390
(90m:11051), http://dx.doi.org/10.1007/BF01234411
 4.
A.
G. Earnest, Representation of spinor exceptional integers by
ternary quadratic forms, Nagoya Math. J. 93 (1984),
27–38. MR
738916 (85j:11042)
 5.
A.
G. Earnest, J.
S. Hsia, and D.
C. Hung, Primitive representations by spinor genera of ternary
quadratic forms, J. London Math. Soc. (2) 50 (1994),
no. 2, 222–230. MR 1291733
(95k:11044), http://dx.doi.org/10.1112/jlms/50.2.222
 6.
J.
S. Hsia and M.
Jöchner, Almost strong approximations for definite quadratic
spaces, Invent. Math. 129 (1997), no. 3,
471–487. MR 1465331
(98m:11025), http://dx.doi.org/10.1007/s002220050169
 7.
John
S. Hsia, Yoshiyuki
Kitaoka, and Martin
Kneser, Representations of positive definite quadratic forms,
J. Reine Angew. Math. 301 (1978), 132–141. MR 0560499
(58 #27758)
 8.
William
C. Jagy, Irving
Kaplansky, and Alexander
Schiemann, There are 913 regular ternary forms, Mathematika
44 (1997), no. 2, 332–341. MR 1600553
(99a:11046), http://dx.doi.org/10.1112/S002557930001264X
 9.
Yoshiyuki
Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in
Mathematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266
(95c:11044)
 10.
O.
T. O’Meara, Introduction to quadratic forms, Die
Grundlehren der mathematischen Wissenschaften, Bd. 117, Academic Press
Inc., Publishers, New York, 1963. MR 0152507
(27 #2485)
 11.
Rainer
SchulzePillot, Exceptional integers for genera of integral ternary
positive definite quadratic forms, Duke Math. J. 102
(2000), no. 2, 351–357. MR 1749442
(2001a:11068), http://dx.doi.org/10.1215/S001270940010227X
 12.
W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine positive quadratische Form darstellbar sind, Izv. Akad. Nauk SSSR, 7 (1929), 111122, 165195.
 13.
G. L. Watson, Some problems in the theory of numbers, Ph.D. Thesis, University of London, 1953.
 14.
G.
L. Watson, The representation of integers by positive ternary
quadratic forms, Mathematika 1 (1954), 104–110.
MR
0067162 (16,680c)
 15.
G.
L. Watson, The classnumber of a positive quadratic form,
Proc. London Math. Soc. (3) 13 (1963), 549–576. MR 0150104
(27 #107)
 16.
G.
L. Watson, Oneclass genera of positive ternary quadratic
forms, Mathematika 19 (1972), 96–104. MR 0314765
(47 #3317)
 17.
G.
L. Watson, Regular positive ternary quadratic forms, J. London
Math. Soc. (2) 13 (1976), no. 1, 97–102. MR 0414489
(54 #2590)
 1.
 W. K. Chan and A. G. Earnest, Discriminant bounds for spinor regular ternary quadratic lattices, submitted.
 2.
 W. K. Chan and B.K. Oh, Finiteness theorems for positive definite regular quadratic forms, Trans. Amer. Math. Soc., 355 (2003), 23852396.
 3.
 W. Duke and R. SchulzePillot, Representations of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math., 99 (1990), 4957. MR 90m:11051
 4.
 A. G. Earnest, Representations of spinor exceptional integers by ternary quadratic forms, Nagoya Math. J., 93 (1984), 2738. MR 85j:11042
 5.
 A. G. Earnest, J. S. Hsia and D. C. Hung, Primitive representations by spinor genera of ternary quadratic forms, J. London Math. Soc. (2), 50 (1994), 222230. MR 95k:11044
 6.
 J. S. Hsia and M. Jöchner, Almost strong approximations for definite quadratic spaces, Invent. Math., 129 (1997), 471487. MR 98m:11025
 7.
 J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math., 301 (1978), 132141. MR 58:27758
 8.
 W. C. Jagy, I. Kaplansky and A. Schiemann, There are regular ternary forms, Mathematika, 44 (1997), 332341. MR 99a:11046
 9.
 Y. Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, 1993. MR 95c:11044
 10.
 O. T. O'Meara, Introduction to quadratic forms, SpringerVerlag, New York, 1963. MR 27:2485
 11.
 R. SchulzePillot, Exceptional integers for genera of integral ternary positive definite quadratic forms, Duke Math. J., 102, No. 2 (2000), 351357. MR 2001a:11068
 12.
 W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine positive quadratische Form darstellbar sind, Izv. Akad. Nauk SSSR, 7 (1929), 111122, 165195.
 13.
 G. L. Watson, Some problems in the theory of numbers, Ph.D. Thesis, University of London, 1953.
 14.
 G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104110. MR 16:680c
 15.
 G. L. Watson, The classnumber of a positive quadratic form, Proc. London Math. Soc. 13 (1963), 549576. MR 27:107
 16.
 G. L. Watson, Oneclass genera of positive ternary quadratic forms, Mathematika, 19 (1972), 96104. MR 47:3317
 17.
 G. L. Watson, Regular positive ternary quadratic forms, J. London Math. Soc. (2) 13 (1976), 97102. MR 54:2590
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11E12,
11E20
Retrieve articles in all journals
with MSC (2000):
11E12,
11E20
Additional Information
Wai Kiu Chan
Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
Email:
wkchan@wesleyan.edu
ByeongKweon Oh
Affiliation:
Department of Applied Mathematics, Sejong University, Seoul 143747, Korea
Email:
bkoh@sejong.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002993904074337
PII:
S 00029939(04)074337
Received by editor(s):
October 15, 2002
Published electronically:
January 27, 2004
Additional Notes:
The research of the first author is partially supported by the National Security Agency and the National Science Foundation
The work of the second author was supported by KOSEF Grant # 9807010105L
Communicated by:
David E. Rohrlich
Article copyright:
© Copyright 2004 American Mathematical Society
