Backward extensions of subnormal operators

Authors:
Il Bong Jung, Alan Lambert and Jan Stochel

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2291-2302

MSC (2000):
Primary 47B20; Secondary 47B37, 44A60

DOI:
https://doi.org/10.1090/S0002-9939-04-07319-8

Published electronically:
March 25, 2004

MathSciNet review:
2052405

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of backward extension for subnormal weighted shifts is generalized to arbitrary subnormal operators. Several differences and similarities in these contexts are explored, with emphasis on the structure of the underlying measures.

**[1]**A. Brown,*On a class of operators*, Proc. Amer. Math. Soc.**4**(1953), 723-728. MR**15:538c****[2]**J. Conway,*Subnormal operators*, Pitman Publ. Co., London, 1981. MR**83i:47030****[3]**R. Curto,*Quadratically hyponormal weighted shifts*, Integral Equations Operator Theory**13**(1990), 49-66. MR**90k:47061****[4]**M. Embry,*A generalization of the Halmos-Bram criterion for subnormality*, Acta Sci. Math. (Szeged)**35**(1973), 61-64. MR**48:6994****[5]**T. Hoover, I. Jung, and A. Lambert,*Moment sequences and backward extensions of subnormal weighted shifts,*J. Austral. Math. Soc.**73**(2002), 27-36. MR**2003e:47056****[6]**I. Jung and C. Li,*A formula for**-hyponormality of backstep extensions of subnormal weighted shifts,*Proc. Amer. Math. Soc.**129**(2001), 2343-2351. MR**2002b:47061****[7]**I. Jung and S. Park,*Quadratically hyponormal weighted shifts and their examples*, Integral Equations and Operator Theory**36**(2000), 480-498. MR**2001i:47051****[8]**I. Jung and S. Park,*Cubically hyponormal weighted shifts and their examples*, J. Math. Anal. Appl.**247**(2000), 557-569. MR**2001h:47047****[9]**A. Lambert,*Subnormality and weighted shifts*, J. London Math. Soc.**14**(1976), 476-480. MR**55:8866****[10]**A. Lambert,*Subnormal composition operators*, Proc. Amer. Math. Soc.**103**(1988), 750-754. MR**89k:47033****[11]**Z. Sebestyén,*On ranges of adjoint operators in Hilbert space*, Acta Sci. Math. (Szeged)**46**(1983), 295-298. MR**85i:47003a****[12]**A. Shields,*Weighted shift operators and analytic function theory*, Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc., Providence, R.I., 1974. MR**50:14341****[13]**J. Stochel,*Seminormality of operators from their tensor product*, Proc. Amer. Math. Soc.**124**(1996), 135-140. MR**96d:47030**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B20,
47B37,
44A60

Retrieve articles in all journals with MSC (2000): 47B20, 47B37, 44A60

Additional Information

**Il Bong Jung**

Affiliation:
Department of Mathematics, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea

Email:
ibjung@knu.ac.kr

**Alan Lambert**

Affiliation:
Department of Mathematics, University of North Carolina at Charlotte, UNCC Station, Charlotte, North Carolina 28223

Email:
allamber@email.uncc.edu

**Jan Stochel**

Affiliation:
Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4, PL-30059 Kraków, Poland

Email:
stochel@im.uj.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-04-07319-8

Keywords:
Cyclic vectors,
subnormal operators,
moment measures

Received by editor(s):
July 31, 2001

Received by editor(s) in revised form:
April 15, 2003

Published electronically:
March 25, 2004

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2004
American Mathematical Society