A counterexample to a conjecture of S. E. Morris

Author:
J. F. Feinstein

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2389-2397

MSC (2000):
Primary 46J10, 46H20

DOI:
https://doi.org/10.1090/S0002-9939-04-07382-4

Published electronically:
February 20, 2004

MathSciNet review:
2052417

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a counterexample to a conjecture of S. E. Morris by showing that there is a compact plane set such that has no nonzero, bounded point derivations but such that is not weakly amenable. We also give an example of a separable uniform algebra such that every maximal ideal of has a bounded approximate identity but such that is not weakly amenable.

**1.**W. G. Bade, P. C. Curtis, Jr., and H. G. Dales,*Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359-377. MR**88f:46098****2.**F. F. Bonsall and J. Duncan,*Complete Normed Algebras*, Springer-Verlag, New York, 1973. MR**54:11013****3.**A. Browder,*Introduction to Function Algebras*, W. A. Benjamin, Inc., New York, 1969. MR**39:7431****4.**H. G. Dales,*Banach algebras and automatic continuity*, London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR**2002e:46001****5.**B. J. Cole,*One point parts and the peak point conjecture*, Ph.D. Thesis, Yale University, 1968.**6.**J. F. Feinstein,*Weak**-amenability of*, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, 21 (1989), 97-125. MR**91h:46092****7.**J. F. Feinstein,*A nontrivial, strongly regular uniform algebra*, J. London Math. Soc., 45 (1992), 288-300. MR**93i:46086****8.**J. F. Feinstein,*Trivial Jensen measures without regularity*, Studia Mathematica, 148 (2001) 67-74. MR**2002k:46127****9.**J. F. Feinstein and D. W. B. Somerset,*Non-regularity for Banach function algebras*, Studia Mathematica, 141 (2000), 53-68. MR**2001g:46115****10.**T. W. Gamelin,*Uniform Algebras*, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1969. MR**53:14137****11.**N. Grøenbæck,*A characterization of weakly amenable Banach algebras*, Studia Math., 94 (1989), 149-162. MR**92a:46055****12.**A. P. Hallstrom,*On bounded point derivations and analytic capacity*, Journal of Functional Analysis, 4 (1969), 153-165. MR**39:4680****13.**B. E. Johnson,*Cohomology in Banach algebras*, Memoirs of the American Mathematical Society, No. 127, Providence, RI, 1972. MR**51:11130****14.**T. W. Körner,*A cheaper Swiss cheese*, Studia Math., 83 (1986), 33-36. MR**87f:46090****15.**S. E. Morris,*Bounded derivations from uniform algebras*, Ph.D. thesis, University of Cambridge, 1993.**16.**E. L. Stout,*The Theory of Uniform Algebras*, Bogden and Quigley, Tarrytown-on-Hudson, New York, 1971. MR**54:11066****17.**J. Wermer,*Bounded point derivations on certain Banach algebras*, J. Funct. Anal., 1 (1967), 28-36. MR**35:5948**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46J10,
46H20

Retrieve articles in all journals with MSC (2000): 46J10, 46H20

Additional Information

**J. F. Feinstein**

Affiliation:
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, England

Email:
Joel.Feinstein@nottingham.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-04-07382-4

Received by editor(s):
May 12, 2003

Published electronically:
February 20, 2004

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2004
American Mathematical Society