Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the discrete groups of Moonshine


Authors: John Conway, John McKay and Abdellah Sebbar
Journal: Proc. Amer. Math. Soc. 132 (2004), 2233-2240
MSC (2000): Primary 11F22, 11F03; Secondary 30F35, 20C34
DOI: https://doi.org/10.1090/S0002-9939-04-07421-0
Published electronically: March 25, 2004
MathSciNet review: 2052398
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the 171 discrete subgroups of $\mbox{PSL}_2(\mathbb{R} )$occurring in Monstrous Moonshine in terms of their group-theoretic properties alone.


References [Enhancements On Off] (What's this?)

  • 1. M. Akbas and D. Singerman, The signature of the normalizer of $\Gamma_0(N)$. Groups, Combinatorics and Geometry (Durham, 1990), 77-86, London Math. Soc. Lecture Note Ser., 165, Cambridge University Press, Cambridge, 1992. MR 94a:20081
  • 2. B. J. Birch and W. Kuyk, eds., Modular functions of one variable IV, Proc. Internat. Summer School (Antwerp, 1972), Lecture Notes in Mathematics, no. 476, Springer-Verlag, New York, 1975. MR 51:12708
  • 3. R. Borcherds, Monstrous Moonshine and Monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. MR 94f:11030
  • 4. R. Borcherds, Automorphic forms on $O_{s+2,2}(R)$ and infinite products, Invent. Math. 120 (1995), 161-213. MR 96j:11067
  • 5. J. H. Conway, Understanding groups like $\Gamma_0(N)$. Groups, Difference Sets, and the Monster (Columbus, OH, 1993), 327-343, Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 1996. MR 98b:11041
  • 6. J. H. Conway, The orbifold notation for surface groups. Groups, Combinatorics and Geometry (Durham, 1990), 438-447, London Math. Soc. Lecture Note Ser., 165, Cambridge University Press, Cambridge, 1992. MR 94a:57025
  • 7. J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. London Math. Soc. 11 (1979), 308-339. MR 81j:20028
  • 8. C. Dong, H. Li, and G. Mason, Modular-invariance of trace functions in orbifold theory and generalised Moonshine, Commun. Math. Phys. 214 (2000), 1-56. MR 2001k:17043
  • 9. C. Dong and G. Mason, An orbifold theory of genus zero associated to the sporadic group $M\sb {24}$, Comm. Math. Phys. 164 (1994), no. 1, 87-104. MR 96a:11041
  • 10. C. Ferenbaugh, On the modular functions involved in ``Monstrous Moonshine'', Ph.D. dissertation, Princeton University, 1992.
  • 11. I. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 90h:17026
  • 12. D. Ford, J. McKay and S. Norton, More on replicable functions, Comm. Algebra 22 (1994), 5175-5193. MR 95i:11036
  • 13. R. Fricke, Die elliptische Funktionen und ihre Anwendungen, 2-ter Teil (Teubner, Leipzig, 1892).
  • 14. R. Griess, The friendly giant, Invent. Math. 69 (1982), 1-102. MR 84m:20024
  • 15. J. Harvey and G. Moore, Algebras, BPS states, and strings, Nucl. Phys. B463 (1996) 315-368. MR 97h:81163
  • 16. Y.-Z. Huang, Two-dimensional conformal geometry and vertex operator algebras, Progress in Mathematics, 148, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 98i:17037
  • 17. R. Ivanov and M. Tuite, Rational generalised Moonshine from Abelian orbifoldings of the Moonshine module, Nucl. Phys. B635 (2002), 435-472. MR 2003g:11040
  • 18. P. G. Kluit, On the normalizer of $\Gamma_0(N)$, in Modular Functions of One Variable, V (Bonn, 1976), 239-246, Lecture Notes in Mathematics, no. 601, Springer-Verlag, New York, 1977. MR 58:513
  • 19. A. P. Ogg, Automorphismes des courbes modulaires, Séminaire Delange-Pisot, Poitou, (7), 1974.
  • 20. M. Tuite, Monstrous Moonshine from orbifolds, Comm. Math. Phys. 146 (1992), no. 2, 277-309. MR 93f:11036
  • 21. M. Tuite, On the relationship between Monstrous Moonshine and the uniqueness of the Moonshine Module, Commun. Math. Phys. 166 (1995), 495-532. MR 96b:17027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F22, 11F03, 30F35, 20C34

Retrieve articles in all journals with MSC (2000): 11F22, 11F03, 30F35, 20C34


Additional Information

John Conway
Affiliation: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08544-1000
Email: conway@math.princeton.edu

John McKay
Affiliation: Department of Mathematics and CICMA, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada
Email: mckay@cs.concordia.ca

Abdellah Sebbar
Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
Email: sebbar@mathstat.uottawa.ca

DOI: https://doi.org/10.1090/S0002-9939-04-07421-0
Keywords: Monster, Moonshine, discrete groups, principal moduli
Received by editor(s): August 2, 2002
Received by editor(s) in revised form: May 7, 2003
Published electronically: March 25, 2004
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society