The linear heat equation with highly oscillating potential

Author:
Ismail Kombe

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2683-2691

MSC (2000):
Primary 35K15, 35K25, 35R25

Published electronically:
April 9, 2004

MathSciNet review:
2054795

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider the following initial value problem:

where and . Nonexistence of positive solutions is analyzed.

**[1]**J. A. Aguilar Crespo and I. Peral Alonso,*Global behavior of the Cauchy problem for some critical nonlinear parabolic equations*, SIAM J. Math. Anal.**31**(2000), no. 6, 1270–1294 (electronic). MR**1766560**, 10.1137/S0036141098341137**[2]**Pierre Baras and Jerome A. Goldstein,*The heat equation with a singular potential*, Trans. Amer. Math. Soc.**284**(1984), no. 1, 121–139. MR**742415**, 10.1090/S0002-9947-1984-0742415-3**[3]**Xavier Cabré and Yvan Martel,*Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier*, C. R. Acad. Sci. Paris Sér. I Math.**329**(1999), no. 11, 973–978 (French, with English and French summaries). MR**1733904**, 10.1016/S0764-4442(00)88588-2**[4]**Lawrence C. Evans,*Partial differential equations*, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR**1625845****[5]**J. P. García Azorero and I. Peral Alonso,*Hardy inequalities and some critical elliptic and parabolic problems*, J. Differential Equations**144**(1998), no. 2, 441–476. MR**1616905**, 10.1006/jdeq.1997.3375**[6]**J. A. Goldstein and Ismail Kombe,*Instantaneous blow up*, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., Vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 141-150.**[7]**J. A. Goldstein and I. Kombe,*Nonlinear degenerate parabolic equations with singular lower-order term*, Advances in Differential Equations**8**(2003), 1153-1192.**[8]**Jerome A. Goldstein and Qi S. Zhang,*On a degenerate heat equation with a singular potential*, J. Funct. Anal.**186**(2001), no. 2, 342–359. MR**1864826**, 10.1006/jfan.2001.3792**[9]**Jerome A. Goldstein and Qi S. Zhang,*Linear parabolic equations with strong singular potentials*, Trans. Amer. Math. Soc.**355**(2003), no. 1, 197–211. MR**1928085**, 10.1090/S0002-9947-02-03057-X**[10]**Gary M. Lieberman,*Second order parabolic differential equations*, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR**1465184****[11]**Jürgen Moser,*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**0159139****[12]**Karl-Theodor Sturm,*Schrödinger operators with highly singular, oscillating potentials*, Manuscripta Math.**76**(1992), no. 3-4, 367–395. MR**1185026**, 10.1007/BF02567767

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K15,
35K25,
35R25

Retrieve articles in all journals with MSC (2000): 35K15, 35K25, 35R25

Additional Information

**Ismail Kombe**

Affiliation:
Department of Mathematics, 202 Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211

Email:
kombe@math.missouri.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-04-07392-7

Keywords:
Heat equation,
instantaneous blow up,
positive solutions

Received by editor(s):
April 21, 2003

Received by editor(s) in revised form:
June 18, 2003

Published electronically:
April 9, 2004

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2004
American Mathematical Society