Partially isometric dilations of noncommuting tuples of operators
Authors:
Michael T. Jury and David W. Kribs
Journal:
Proc. Amer. Math. Soc. 133 (2005), 213222
MSC (2000):
Primary 47A20, 47A45
Published electronically:
June 23, 2004
MathSciNet review:
2085172
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given a row contraction of operators on a Hilbert space and a family of projections on the space that stabilizes the operators, we show there is a unique minimal joint dilation to a row contraction of partial isometries that satisfy natural relations. For a fixed row contraction the set of all dilations forms a partially ordered set with a largest and smallest element. A key technical device in our analysis is a connection with directed graphs. We use a Wold decomposition for partial isometries to describe the models for these dilations, and we discuss how the basic properties of a dilation depend on the row contraction.
 1.
William
Arveson, An invitation to 𝐶*algebras,
SpringerVerlag, New YorkHeidelberg, 1976. Graduate Texts in Mathematics,
No. 39. MR
0512360 (58 #23621)
 2.
J.A. Ball, V. Vinnikov, Functional models for representations of the Cuntz algebra, preprint, 2002.
 3.
Ola
Bratteli and Palle
E. T. Jorgensen, Iterated function systems and permutation
representations of the Cuntz algebra, Mem. Amer. Math. Soc.
139 (1999), no. 663, x+89. MR 1469149
(99k:46094a), http://dx.doi.org/10.1090/memo/0663
 4.
John
W. Bunce, Models for 𝑛tuples of noncommuting
operators, J. Funct. Anal. 57 (1984), no. 1,
21–30. MR
744917 (85k:47019), http://dx.doi.org/10.1016/00221236(84)900983
 5.
Kenneth
R. Davidson, Elias
Katsoulis, and David
R. Pitts, The structure of free semigroup algebras, J. Reine
Angew. Math. 533 (2001), 99–125. MR 1823866
(2002a:47107), http://dx.doi.org/10.1515/crll.2001.028
 6.
Kenneth
R. Davidson, David
W. Kribs, and Miron
E. Shpigel, Isometric dilations of noncommuting finite rank
𝑛tuples, Canad. J. Math. 53 (2001),
no. 3, 506–545. MR 1827819
(2002f:47010), http://dx.doi.org/10.4153/CJM20010220
 7.
S.
W. Drury, A generalization of von
Neumann’s inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), no. 3, 300–304. MR 480362
(80c:47010), http://dx.doi.org/10.1090/S00029939197804803628
 8.
M. Ephrem, Characterizing liminal and type I graph algebras, arXiv:math.OA/0211241, preprint, 2003.
 9.
Béla
Sz.Nagy and Ciprian
Foiaș, Harmonic analysis of operators on Hilbert space,
Translated from the French and revised, NorthHolland Publishing Co.,
AmsterdamLondon; American Elsevier Publishing Co., Inc., New York;
Akadémiai Kiadó, Budapest, 1970. MR 0275190
(43 #947)
 10.
Arthur
E. Frazho, Models for noncommuting operators, J. Funct. Anal.
48 (1982), no. 1, 1–11. MR 671311
(84h:47010), http://dx.doi.org/10.1016/00221236(82)90057X
 11.
Arthur
E. Frazho, Complements to models for noncommuting operators,
J. Funct. Anal. 59 (1984), no. 3, 445–461. MR 769375
(86h:47010), http://dx.doi.org/10.1016/00221236(84)900594
 12.
James
Glimm, Type I 𝐶*algebras, Ann. of Math. (2)
73 (1961), 572–612. MR 0124756
(23 #A2066)
 13.
F. Jaeck, S.C. Power, The semigroupoid algebras of finite graphs are hyperreflexive, preprint, 2003.
 14.
Palle
E. T. Jorgensen, Minimality of the data in wavelet filters,
Adv. Math. 159 (2001), no. 2, 143–228. With an
appendix by Brian Treadway. MR 1825057
(2002h:46092), http://dx.doi.org/10.1006/aima.2000.1958
 15.
M.T. Jury, D.W. Kribs, Ideal structure in free semigroupoid algebras from directed graphs, J. Operator Theory, to appear.
 16.
E. Katsoulis, D.W. Kribs, Isomorphisms of algebras associated with directed graphs, preprint, 2003.
 17.
D.W. Kribs, S.C. Power, Partly free algebras, Proc. International Workshop on Operator Theory and its Applications 2002, to appear.
 18.
D.W. Kribs, S.C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc., to appear.
 19.
David
W. Kribs, The curvature invariant of a noncommuting
𝑛tuple, Integral Equations Operator Theory
41 (2001), no. 4, 426–454. MR 1857801
(2003b:47013), http://dx.doi.org/10.1007/BF01202103
 20.
Alex
Kumjian, David
Pask, and Iain
Raeburn, CuntzKrieger algebras of directed graphs, Pacific J.
Math. 184 (1998), no. 1, 161–174. MR 1626528
(99i:46049), http://dx.doi.org/10.2140/pjm.1998.184.161
 21.
Alex
Kumjian, David
Pask, Iain
Raeburn, and Jean
Renault, Graphs, groupoids, and CuntzKrieger algebras, J.
Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596
(98g:46083), http://dx.doi.org/10.1006/jfan.1996.3001
 22.
Paul
S. Muhly, A finitedimensional introduction to operator
algebra, Operator algebras and applications (Samos, 1996) NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., vol. 495, Kluwer Acad. Publ.,
Dordrecht, 1997, pp. 313–354. MR 1462686
(98h:46062)
 23.
Paul
S. Muhly and Baruch
Solel, Tensor algebras, induced representations, and the Wold
decomposition, Canad. J. Math. 51 (1999), no. 4,
850–880. MR 1701345
(2000i:46052), http://dx.doi.org/10.4153/CJM19990378
 24.
Paul
S. Muhly and Baruch
Solel, Tensor algebras over 𝐶*correspondences:
representations, dilations, and 𝐶*envelopes, J. Funct. Anal.
158 (1998), no. 2, 389–457. MR 1648483
(99j:46066), http://dx.doi.org/10.1006/jfan.1998.3294
 25.
Gelu
Popescu, Isometric dilations for infinite
sequences of noncommuting operators, Trans.
Amer. Math. Soc. 316 (1989), no. 2, 523–536. MR 972704
(90c:47006), http://dx.doi.org/10.1090/S00029947198909727043
 26.
Gelu
Popescu, Curvature invariant for Hilbert modules over free
semigroup algebras, Adv. Math. 158 (2001),
no. 2, 264–309. MR 1822685
(2002b:46097), http://dx.doi.org/10.1006/aima.2000.1972
 27.
J.
J. Schäffer, On unitary dilations of
contractions, Proc. Amer. Math. Soc. 6 (1955), 322. MR 0068740
(16,934c), http://dx.doi.org/10.1090/S00029939195500687407
 1.
 W. Arveson, An invitation to algebras, Graduate Texts in Mathematics, No.39, SpringerVerlag, New YorkHeidelberg, 1976. MR 58:23621
 2.
 J.A. Ball, V. Vinnikov, Functional models for representations of the Cuntz algebra, preprint, 2002.
 3.
 O. Bratteli and P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999) no.663. MR 99k:46094a
 4.
 J. Bunce, Models for ntuples of noncommuting operators, J. Func. Anal. 57 (1984), 2130. MR 85k:47019
 5.
 K.R. Davidson, E. Katsoulis, D.R. Pitts, The structure of free semigroup algebras, J. reine angew. Math. 533 (2001), 99125. MR 2002a:47107
 6.
 K.R. Davidson, D.W. Kribs, M.E. Shpigel, Isometric dilations of noncommuting finite rank ntuples, Can. J. Math. 53 (2001), 506545. MR 2002f:47010
 7.
 S.W. Drury, A generalization of von Neumann's inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), 300304. MR 80c:47010
 8.
 M. Ephrem, Characterizing liminal and type I graph algebras, arXiv:math.OA/0211241, preprint, 2003.
 9.
 C. Foias, B. Sz. Nagy, Harmonic analysis of operators on Hilbert space, North Holland Pub. Co., London, 1970. MR 43:947
 10.
 A. Frazho, Models for noncommuting operators, J. Func. Anal. 48 (1982), 111. MR 84h:47010
 11.
 A. Frahzo, Complements to models for noncommuting operators, J. Func. Anal. 59 (1984), 445461. MR 86h:47010
 12.
 J. Glimm, Type I C*algebras, Math. Ann. 73 (1961), 572612. MR 23:A2066
 13.
 F. Jaeck, S.C. Power, The semigroupoid algebras of finite graphs are hyperreflexive, preprint, 2003.
 14.
 P.E.T. Jorgensen, Minimality of the data in wavelet filters, Adv. in Math. 159 (2001), 143228. MR 2002h:46092
 15.
 M.T. Jury, D.W. Kribs, Ideal structure in free semigroupoid algebras from directed graphs, J. Operator Theory, to appear.
 16.
 E. Katsoulis, D.W. Kribs, Isomorphisms of algebras associated with directed graphs, preprint, 2003.
 17.
 D.W. Kribs, S.C. Power, Partly free algebras, Proc. International Workshop on Operator Theory and its Applications 2002, to appear.
 18.
 D.W. Kribs, S.C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc., to appear.
 19.
 D.W. Kribs, The curvature invariant of a noncommuting tuple, Integral Eqtns. & Operator Thy., 41 (2001), 426454. MR 2003b:47013
 20.
 A. Kumjian, D. Pask, I. Raeburn, CuntzKrieger algebras of directed graphs, Pacific J. Math 184 (1998), 161174. MR 99i:46049
 21.
 A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, Groupoids, and CuntzKrieger algebras, J. Funct. Anal. 144 (1997), 505541. MR 98g:46083
 22.
 P.S. Muhly, A finite dimensional introduction to operator algebra, A. Katavolos (ed.), Operator Algebras and Applications, 313354, Kluwer Academic Publishers, 1997. MR 98h:46062
 23.
 P.S. Muhly, B. Solel, Tensor algebras, induced representations, and the Wold decomposition, Can. J. Math. 51 (1999), 850880. MR 2000i:46052
 24.
 P.S. Muhly, B. Solel, Tensor algebras over correspondences: representations, dilations, and envelopes, J. Func. Anal. 158 (1998), 389457. MR 99j:46066
 25.
 G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), 523536. MR 90c:47006
 26.
 G. Popescu, Curvature invariant for Hilbert modules over free semigroup algebras, Adv. Math. 158 (2001), 264309. MR 2002b:46097
 27.
 J.J. Schaffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322. MR 16,934c
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47A20,
47A45
Retrieve articles in all journals
with MSC (2000):
47A20,
47A45
Additional Information
Michael T. Jury
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
jury@math.purdue.edu
David W. Kribs
Affiliation:
Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Email:
dkribs@uoguelph.ca
DOI:
http://dx.doi.org/10.1090/S0002993904075471
PII:
S 00029939(04)075471
Keywords:
Hilbert space,
operator,
row contraction,
partial isometry,
minimal dilation,
directed graph
Received by editor(s):
June 13, 2003
Received by editor(s) in revised form:
September 29, 2003
Published electronically:
June 23, 2004
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2004
American Mathematical Society
