Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Hermite-Biehler functions with zeros close to the imaginary axis


Authors: Michael Kaltenbäck and Harald Woracek
Journal: Proc. Amer. Math. Soc. 133 (2005), 245-255
MSC (2000): Primary 46E20, 46E22; Secondary 30H05, 30D15
Published electronically: August 4, 2004
MathSciNet review: 2086217
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Hermite-Biehler function $E$ gives rise to a de Branges Hilbert space $\mathcal{H}(E)$ consisting of entire functions. We are going to show that for Hermite-Biehler functions of sufficiently small growth and a certain distribution of zeros every proper de Branges subspace of $\mathcal{H}(E)$ coincides for some $n\in\mathbb{N}$ with the $(n+1)$-dimensional linear space of all polynomials of degree at most $n$.


References [Enhancements On Off] (What's this?)

  • 1. R. Boas, Entire functions, Academic Press, New York, 1954. MR 16:914f
  • 2. L.de Branges, Hilbert spaces of entire functions, Prentice-Hall, London, 1968. MR 37:4590
  • 3. H.Dym, H.P.McKean, Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes, Illinois J. 14 (1970), 299-343. MR 41:4642
  • 4. M. Kaltenbäck, H. Woracek, Pontryagin spaces of entire functions I, Integral Equations Operator Theory, 33 (1999), 34-97. MR 2000a:46039
  • 5. M. Kaltenbäck, H. Woracek, de Branges spaces of exponential type: General theory of growth, submitted.
  • 6. N.Levinson, H.P.McKean, Weighted trigonometric approximation on $\mathbb{R}^1$ with application to the germ field of a stationary gaussian noise, Acta Mathematica (Uppsala) 112 (1964), 99-143. MR 29:414
  • 7. M. Rosenblum, J. Rovnyak, Topics in Hardy classes and univalent functions, Birkhäuser Verlag, Basel, 1994. MR 97a:30047
  • 8. E.C. Titchmarsh, The theory of functions, Oxford University Press, Second edition 1939, corrected 1983.
  • 9. E.C. Titchmarsh, The theory of the Riemann Zeta-function, Oxford University Press, 1951. MR 88c:11049

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E20, 46E22, 30H05, 30D15

Retrieve articles in all journals with MSC (2000): 46E20, 46E22, 30H05, 30D15


Additional Information

Michael Kaltenbäck
Affiliation: Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8–10/101, A–1040 Wien, Austria
Email: michael.kaltenbaeck@tuwien.ac.at

Harald Woracek
Affiliation: Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstr. 8–10/101, A–1040 Wien, Austria
Email: harald.woracek@tuwien.ac.at

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07605-1
PII: S 0002-9939(04)07605-1
Received by editor(s): March 15, 2003
Received by editor(s) in revised form: October 7, 2003
Published electronically: August 4, 2004
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2004 American Mathematical Society