Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Summation formulae for elliptic hypergeometric series


Author: S. Ole Warnaar
Journal: Proc. Amer. Math. Soc. 133 (2005), 519-527
MSC (2000): Primary 33D15, 33E05
DOI: https://doi.org/10.1090/S0002-9939-04-07558-6
Published electronically: August 20, 2004
MathSciNet review: 2093076
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several new identities for elliptic hypergeometric series are proved. Remarkably, some of these are elliptic analogues of identities for basic hypergeometric series that are balanced but not very-well-poised.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, On $q$-analogues of the Watson and Whipple summations, SIAM J. Math. Anal. 7 (1976), 332-336. MR 53:3373
  • 2. G. E. Andrews and A. Berkovich, The WP-Bailey tree and its implications, J. London Math. Soc. (2) 66 (2002), 529-549. MR 2003m:33021
  • 3. J. F. van Diejen and V. P. Spiridonov, An elliptic Macdonald-Morris conjecture and multiple modular hypergeometric sums, Math. Res. Lett. 7 (2000), 729-746. MR 2002m:33022
  • 4. J. F. van Diejen and V. P. Spiridonov, Elliptic Selberg integrals, Internat. Math. Res. Notices 20 (2001), 1083-1110. MR 2002j:33016
  • 5. J. F. van Diejen and V. P. Spiridonov, Modular hypergeometric residue sums of elliptic Selberg integrals, Lett. Math. Phys. 58 (2001), 223-238. MR 2003g:11046
  • 6. J. F. van Diejen and V. P. Spiridonov, Elliptic beta integrals and modular hypergeometric sums: an overview, Rocky Mountain J. Math. 32 (2002), 639-656. MR 2003j:33061
  • 7. I. B. Frenkel and V. G. Turaev, Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, The Arnold-Gelfand mathematical seminars, 171-204, (Birkhäuser Boston, Boston, MA, 1997). MR 98k:33034
  • 8. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35, (Cambridge University Press, Cambridge, 1990). MR 91d:33034
  • 9. Y. Kajihara and M. Noumi, Multiple elliptic hypergeometric series. An approach from the Cauchy determinant, Indag. Math. (N.S.) 14 (2004), 395-421.
  • 10. E. Koelink, Y. van Norden and H. Rosengren, Elliptic U(2) quantum group and elliptic hypergeometric series, Commun. Math. Phys. 245 (2004), 519-537.
  • 11. B. Nassrallah and M. Rahman, On the $q$-analogues of some transformations of nearly-poised hypergeometric series, Trans. Amer. Math. Soc. 268 (1981), 211-229. MR 84i:33004
  • 12. M. Rahman and A. Verma, Quadratic transformation formulas for basic hypergeometric series, Trans. Amer. Math. Soc. 335 (1993), 277-302. MR 93c:33014
  • 13. E. M. Rains, Transformations of elliptic hypergometric integrals, arXiv:math.QA/0309252.
  • 14. H. Rosengren, A proof of a multivariable elliptic summation formula conjectured by Warnaar, in $q$-Series with Applications to Combinatorics, Number Theory, and Physics, pp. 193-202, B. C. Berndt and K. Ono eds., Contemp. Math. Vol. 291 (Amer. Math. Soc., Providence, RI, 2001). MR 2002m:33027
  • 15. H. Rosengren, Elliptic hypergeometric series on root systems, Adv. Math. 181 (2004), 417-447.
  • 16. H. Rosengren and M. Schlosser, Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations, Indag. Math. (N.S.) 14 (2004), 483-513.
  • 17. H. Rosengren and M. Schlosser, On Warnaar's elliptic matrix inversion and Karlsson-Minton-type elliptic hypergeometric series, arXiv:math.CA/0309358.
  • 18. L. J. Slater, Generalized hypergeometric functions, (Cambridge University Press, Cambridge, 1966). MR 34:1570
  • 19. V. P. Spiridonov, Elliptic beta integrals and special functions of hypergeometric type, in Integrable structures of exactly solvable two-dimensional models of quantum field theory, pp. 305-313, S. Pakuliak and G. von Gehlen eds., NATO Sci. Ser. II Math. Phys. Chem. Vol. 35, (Kluwer Academic Publishers, Dordrecht, 2001). MR 2003b:33019
  • 20. V. P. Spiridonov, Theta hypergeometric series, in Asymptotic Combinatorics with Applications to Mathematical Physics, pp. 307-327, V. A. Malyshev and A. M. Vershik, eds., (Kluwer Academic Publishers, Dordrecht, 2002).
  • 21. V. P. Spiridonov, An elliptic incarnation of the Bailey chain, Internat. Math. Res. Notices 37 (2002), 1945-1977. MR 2003j:33055
  • 22. V. P. Spiridonov, Theta hypergeometric integrals, Algebra i Analiz 15 (2003), 161-215.
  • 23. V. Spiridonov and A. Zhedanov, Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can. 22 (2000), 70-76. MR 2001c:33035
  • 24. S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx. 18 (2002), 479-502. MR 2003h:33018
  • 25. S. O. Warnaar, Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.) 14 (2004), 571-588.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33D15, 33E05

Retrieve articles in all journals with MSC (2000): 33D15, 33E05


Additional Information

S. Ole Warnaar
Affiliation: Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia
Email: warnaar@ms.unimelb.edu.au

DOI: https://doi.org/10.1090/S0002-9939-04-07558-6
Keywords: Basic hypergeometric series, elliptic hypergeometric series
Received by editor(s): September 16, 2003
Received by editor(s) in revised form: October 20, 2003
Published electronically: August 20, 2004
Additional Notes: This work was supported by the Australian Research Council
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society