Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Algebraic functions with even monodromy


Authors: Michela Artebani and Gian Pietro Pirola
Journal: Proc. Amer. Math. Soc. 133 (2005), 331-341
MSC (2000): Primary 14H05; Secondary 14H30, 14H10.
Published electronically: September 16, 2004
MathSciNet review: 2093052
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a compact Riemann surface of genus $g$and $d\geq 12g+4$ be an integer. We show that $X$ admits meromorphic functions with monodromy group equal to the alternating group $A_d.$


References [Enhancements On Off] (What's this?)

  • 1. E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
  • 2. Paul Bailey and Michael D. Fried, Hurwitz monodromy, spin separation and higher levels of a modular tower, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Proc. Sympos. Pure Math., vol. 70, Amer. Math. Soc., Providence, RI, 2002, pp. 79–220. MR 1935406, 10.1090/pspum/070/1935406
  • 3. S. Brivio and G. Pirola. Alternating groups and rational functions on surfaces, preprint.
  • 4. Maurizio Cornalba, Systèmes pluricanoniques sur l’espace des modules des courbes et diviseurs de courbes 𝑘-gonales (d’après Harris et Mumford), Astérisque 121-122 (1985), 7–24 (French). Seminar Bourbaki, Vol. 1983/84. MR 768951
  • 5. Mike Fried, Combinatorial computation of moduli dimension of Nielsen classes of covers, Graphs and algorithms (Boulder, CO, 1987) Contemp. Math., vol. 89, Amer. Math. Soc., Providence, RI, 1989, pp. 61–79. MR 1006477, 10.1090/conm/089/1006477
  • 6. Michael D. Fried, Introduction to modular towers: generalizing dihedral group–modular curve connections, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 111–171. MR 1352270, 10.1090/conm/186/02179
  • 7. M. Fried. Alternating Group and Lifting Invariants, (preprint)
  • 8. William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542–575. MR 0260752
  • 9. Robert Guralnick, Monodromy groups of coverings of curves, Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ., vol. 41, Cambridge Univ. Press, Cambridge, 2003, pp. 1–46. MR 2012212, 10.2977/prims/1145475402
  • 10. Robert Guralnick and Kay Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), no. 1, 127–145. MR 1643074, 10.1006/jabr.1998.7451
  • 11. Robert M. Guralnick and Michael G. Neubauer, Monodromy groups of branched coverings: the generic case, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 325–352. MR 1352281, 10.1090/conm/186/02190
  • 12. R. Guralnick and J. Shareshian. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points, preprint.
  • 13. Robert M. Guralnick and John G. Thompson, Finite groups of genus zero, J. Algebra 131 (1990), no. 1, 303–341. MR 1055011, 10.1016/0021-8693(90)90178-Q
  • 14. Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
  • 15. Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, 10.1007/BF01393371
  • 16. Steven L. Kleiman and Dan Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163–176. MR 0357398
  • 17. K. Magaard and H. Völklein. The monodromy group of a function on a general curve, Israel J. Math., to appear.
  • 18. Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5, American Mathematical Society, Providence, RI, 1995. MR 1326604
  • 19. Gian Pietro Pirola, Algebraic curves and non-rigid minimal surfaces in the Euclidean space, Pacific J. Math. 183 (1998), no. 2, 333–357. MR 1625966, 10.2140/pjm.1998.183.333
  • 20. Jean-Pierre Serre, Relèvements dans 𝔄_{𝔫}, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 8, 477–482 (French, with English summary). MR 1076476
  • 21. Jean-Pierre Serre, Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, 547–552 (French, with English summary). MR 1078120
  • 22. O. Zariski. Collected Papers Vol. III, MIT Press, Cambridge, MA, 1972-1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14H05, 14H30, 14H10.

Retrieve articles in all journals with MSC (2000): 14H05, 14H30, 14H10.


Additional Information

Michela Artebani
Affiliation: Dipartimento di Matematica “DIMA”, Universitá di Genova, via Dodecaneso 35, 16146 Genova, Italia
Address at time of publication: Dipartimento di Matematica “F. Casorati”, Universitá di Pavia, via Ferrata 1, 27100 Pavia, Italia
Email: artebani@dimat.unipv.it

Gian Pietro Pirola
Affiliation: Dipartimento di Matematica “F. Casorati”, Universitá di Pavia, via Ferrata 1, 27100 Pavia, Italia
Email: pirola@dimat.unipv.it

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07713-5
Keywords: Monodromy group, spin bundle, even monodromy.
Received by editor(s): April 17, 2003
Published electronically: September 16, 2004
Additional Notes: This work was partially supported by: 1) PRIN 2003: Spazi di moduli e teoria di Lie; 2) Gnsaga; 3) Far 2002 (PV): Varietá algebriche, calcolo algebrico, grafi orientati e topologici
Communicated by: Michael Stillman
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.