Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Algebraic functions with even monodromy


Authors: Michela Artebani and Gian Pietro Pirola
Journal: Proc. Amer. Math. Soc. 133 (2005), 331-341
MSC (2000): Primary 14H05; Secondary 14H30, 14H10.
DOI: https://doi.org/10.1090/S0002-9939-04-07713-5
Published electronically: September 16, 2004
MathSciNet review: 2093052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a compact Riemann surface of genus $g$and $d\geq 12g+4$ be an integer. We show that $X$ admits meromorphic functions with monodromy group equal to the alternating group $A_d.$


References [Enhancements On Off] (What's this?)

  • 1. E. Arbarello, M. Cornalba, P. Griffiths, J. Harris. Geometry of algebraic curves I, Grundlehren Math. Wiss. (267) Springer, Berlin, 1985. MR 0770932 (86h:14019)
  • 2. P. Bailey and M. Fried. Hurwitz monodromy, spin separation and higher levels of a modular tower, Arithmetic fundamental groups and noncommutative algebra, editors M. Fried and Y. Ihara, 79-220, Proc. Sympos. Pure Math., (70) Providence, RI, 2002. MR 1935406
  • 3. S. Brivio and G. Pirola. Alternating groups and rational functions on surfaces, preprint.
  • 4. M. Cornalba. Systèmes pluricanoniques sur l'espace des modules des courbes et diviseurs de courbes k-gonales (d'après Harris et Mumford), Seminar Bourbaki, vol.1983/84, Astérisque No. 121-122, 7-24, 1985. MR 0768951 (86c:14021)
  • 5. M. Fried. Combinatorial computation of moduli dimension of Nielsen classes of covers, Contemp. Math., (89), 61-79, Amer. Math. Soc., Providence, RI. 1989. MR 1006477 (90j:12007)
  • 6. M. Fried. Introduction to modular towers: generalizing dihedral group-modular curve connections, Recent developments of the inverse Galois problem, Contemp. Math., (186), 111-171, Amer. Math. Soc., Providence, RI. 1995. MR 1352270 (97a:11070)
  • 7. M. Fried. Alternating Group and Lifting Invariants, (preprint)
  • 8. W. Fulton. Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math. 90, 542-575, 1969. MR 0260752 (41:5375)
  • 9. R. Guralnick. Monodromy groups of coverings of curves, Galois Groups and Fundamental Groups. Leila Schneps Ed., Cambridge Univ. Press, Cambridge, 2003. MR 2012212
  • 10. R. Guralnick and K. Magaard. On the minimal degree of a primitive permutation group, J. Algebra, 207, no.1, 127-145, 1998. MR 1643074 (99g:20014)
  • 11. R. Guralnick and M. Neubauer. Monodromy groups of branched coverings: the generic case, Recent developments of the inverse Galois problem (Seattle, Wa, 1993), Contemp. Math., (186), 325-352, Amer. Math. Soc., Providence, RI, 1995. MR 1352281 (96h:20007)
  • 12. R. Guralnick and J. Shareshian. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points, preprint.
  • 13. R. Guralnick and J. Thompson. Finite groups of genus zero, J. Algebra, (131), 303-341, 1990. MR 1055011 (91e:20006)
  • 14. J. Harris. Galois groups and enumerative problems, Duke Math. J., 46 (4), 624-724, 1979. MR 0552521 (80m:14038)
  • 15. J. Harris and D. Mumford. On the Kodaira dimension of the moduli space of curves, Invent. Math. (67), 23-88, 1982. MR 0664324 (83i:14018)
  • 16. S. Kleiman and D. Laksov. Another proof of the existence of special divisors, Acta Math., (132), 163-175, 1974. MR 0357398 (50:9866)
  • 17. K. Magaard and H. Völklein. The monodromy group of a function on a general curve, Israel J. Math., to appear.
  • 18. R. Miranda. Algebraic Curves and Riemann Surfaces. Grad. Stud. in Math. 5, Amer. Math. Soc., Providence, RI, 1995. MR 1326604 (96f:14029)
  • 19. G. Pirola. Algebraic curves and non-rigid minimal surfaces in the Euclidean space, Pacific J. Math., (183), no. 2, 333-357, 1998. MR 1625966 (99e:53009)
  • 20. J. P. Serre. Relèvement dans $\tilde{\mathcal A}_{n}$, C. R. Acad. Sci. Paris (311), no. 8, 477-482, 1990. MR 1076476 (91m:20010)
  • 21. J. P. Serre. Revêtements à ramification impaire and thêta caratéristiques, C. R. Acad. Sci. Paris (311), no. 9, 547-552, 1990. MR 1078120 (92a:14022)
  • 22. O. Zariski. Collected Papers Vol. III, MIT Press, Cambridge, MA, 1972-1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14H05, 14H30, 14H10.

Retrieve articles in all journals with MSC (2000): 14H05, 14H30, 14H10.


Additional Information

Michela Artebani
Affiliation: Dipartimento di Matematica “DIMA”, Universitá di Genova, via Dodecaneso 35, 16146 Genova, Italia
Address at time of publication: Dipartimento di Matematica “F. Casorati”, Universitá di Pavia, via Ferrata 1, 27100 Pavia, Italia
Email: artebani@dimat.unipv.it

Gian Pietro Pirola
Affiliation: Dipartimento di Matematica “F. Casorati”, Universitá di Pavia, via Ferrata 1, 27100 Pavia, Italia
Email: pirola@dimat.unipv.it

DOI: https://doi.org/10.1090/S0002-9939-04-07713-5
Keywords: Monodromy group, spin bundle, even monodromy.
Received by editor(s): April 17, 2003
Published electronically: September 16, 2004
Additional Notes: This work was partially supported by: 1) PRIN 2003: Spazi di moduli e teoria di Lie; 2) Gnsaga; 3) Far 2002 (PV): Varietá algebriche, calcolo algebrico, grafi orientati e topologici
Communicated by: Michael Stillman
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society