Simplicity of noncommutative Dedekind domains
Authors:
K. R. Goodearl and J. T. Stafford
Journal:
Proc. Amer. Math. Soc. 133 (2005), 681686
MSC (2000):
Primary 16P40, 16E60
Published electronically:
August 24, 2004
MathSciNet review:
2113915
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The following dichotomy is established: A finitely generated, complex Dedekind domain that is not commutative is a simple ring. Weaker versions of this dichotomy are proved for Dedekind prime rings and hereditary noetherian prime rings.
 [ER]
David
Eisenbud and J.
C. Robson, Hereditary Noetherian prime rings, J. Algebra
16 (1970), 86–104. MR 0291222
(45 #316)
 [FS]
Daniel
R. Farkas and Lance
W. Small, Algebras which are nearly finite dimensional and their
identities, Israel J. Math. 127 (2002),
245–251. MR 1900701
(2003c:16033), http://dx.doi.org/10.1007/BF02784533
 [GS]
M.
P. Gilchrist and M.
K. Smith, Noncommutative UFDs are often PIDs, Math. Proc.
Cambridge Philos. Soc. 95 (1984), no. 3,
417–419. MR
755829 (85h:16002), http://dx.doi.org/10.1017/S0305004100061727
 [Ja]
A.
V. Jategaonkar, Localization in Noetherian rings, London
Mathematical Society Lecture Note Series, vol. 98, Cambridge
University Press, Cambridge, 1986. MR 839644
(88c:16005)
 [Le]
Thomas
H. Lenagan, Krull dimension and invertible ideals in Noetherian
rings, Proc. Edinburgh Math. Soc. (2) 20 (1976),
no. 2, 81–86. MR 0419520
(54 #7541)
 [MR]
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Revised edition,
Graduate Studies in Mathematics, vol. 30, American Mathematical
Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901
(2001i:16039)
 [Pa]
Donald
S. Passman, The algebraic structure of group rings, Pure and
Applied Mathematics, WileyInterscience [John Wiley & Sons], New
YorkLondonSydney, 1977. MR 470211
(81d:16001)
 [Pi]
Richard
S. Pierce, Associative algebras, Graduate Texts in
Mathematics, vol. 88, SpringerVerlag, New YorkBerlin, 1982. Studies
in the History of Modern Science, 9. MR 674652
(84c:16001)
 [Rw]
Louis
H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics,
vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
(89h:16001)
 [SW1]
J.
T. Stafford and R.
B. Warfield Jr., Hereditary orders with infinitely many idempotent
ideals, J. Pure Appl. Algebra 31 (1984),
no. 13, 217–225. MR 738216
(86c:16002), http://dx.doi.org/10.1016/00224049(84)900872
 [SW2]
J.
T. Stafford and R.
B. Warfield Jr., Constructions of hereditary Noetherian rings and
simple rings, Proc. London Math. Soc. (3) 51 (1985),
no. 1, 1–20. MR 788847
(86j:16016), http://dx.doi.org/10.1112/plms/s351.1.1
 [Va]
P.
Vámos, On the minimal prime ideal of a tensor product of two
fields, Math. Proc. Cambridge Philos. Soc. 84 (1978),
no. 1, 25–35. MR 489566
(80j:12016), http://dx.doi.org/10.1017/S0305004100054840
 [Ya]
Sleiman
Yammine, Les théorèmes de CohenSeidenberg en
algèbre non commutative, Séminaire
d’Algèbre Paul Dubreil 31ème année (Paris,
1977–1978), Lecture Notes in Math., vol. 740, Springer, Berlin,
1979, pp. 120–169 (French). MR 563499
(81i:16004)
 [ER]
 D. Eisenbud and J. C. Robson, Hereditary noetherian prime rings, J. Algebra 16 (1970), 86104. MR 0291222 (45:316)
 [FS]
 D. R. Farkas and L. W. Small, Algebras which are nearly finite dimensional and their identities, Israel J. Math. 127 (2002), 245251. MR 1900701 (2003c:16033)
 [GS]
 M. Gilchrist and M. Smith, Noncommutative UFDs are often PIDs, Math. Proc. Cambridge Phil. Soc. 96 (1984), 417419. MR 0755829 (85h:16002)
 [Ja]
 A. V. Jategaonkar, Localization in Noetherian Rings, London Math. Soc. Lecture Note Series 98, Cambridge University Press, Cambridge, 1986. MR 0839644 (88c:16005)
 [Le]
 T. H. Lenagan, Krull dimension and invertible ideals in noetherian rings, Proc. Edinburgh Math. Soc. 20 (1976), 8186. MR 0419520 (54:7541)
 [MR]
 J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, WileyInterscience, New York, 1987; Revised Edition, Amer. Math. Soc., Providence, 2001. MR 1811901 (2001i:16039)
 [Pa]
 D. S. Passman, The Algebraic Structure of Group Rings, Wiley, New York, 1977; Reprinted Edition, Krieger, Malabar, FL, 1985. MR 0470211 (81d:16001)
 [Pi]
 R. S. Pierce, Associative Algebras, Graduate Texts in Math. 88, SpringerVerlag, New York, 1982. MR 0674652 (84c:16001)
 [Rw]
 L. H. Rowen, Ring Theory, Vol. I, Academic Press, San Diego, 1988.MR 0940245 (89h:16001)
 [SW1]
 J. T. Stafford and R. B. Warfield, Jr., Hereditary orders with infinitely many idempotent ideals, J. Pure Appl. Algebra 31 (1984), 217225. MR 0738216 (86c:16002)
 [SW2]
 J. T. Stafford and R. B. Warfield, Jr., Construction of hereditary noetherian rings and simple rings, Proc. London Math. Soc. 51 (1985), 120. MR 0788847 (86j:16016)
 [Va]
 P. Vámos, On the minimal prime ideals in a tensor product of fields, Math. Proc. Cambridge Phil. Soc. 84 (1978), 2535. MR 0489566 (80j:12016)
 [Ya]
 S. Yammine, Les théorèmes de CohenSeidenberg en algèbre non commutative, in Séminaire d'Algèbre Paul Dubreil 197778 (M.P. Malliavin, Ed.), Lecture Notes in Math. 740, SpringerVerlag, Berlin, 1979, pp. 120169. MR 0563499 (81i:16004)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
16P40,
16E60
Retrieve articles in all journals
with MSC (2000):
16P40,
16E60
Additional Information
K. R. Goodearl
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 931063080
Email:
goodearl@math.ucsb.edu
J. T. Stafford
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 481091109
Email:
jts@umich.edu
DOI:
http://dx.doi.org/10.1090/S0002993904075744
PII:
S 00029939(04)075744
Keywords:
Dedekind domain,
simple ring,
invertible ideal,
HNP ring
Received by editor(s):
November 6, 2003
Published electronically:
August 24, 2004
Additional Notes:
The research of both authors was partially supported by grants from the National Science Foundation. Some of it was carried out while the authors participated in the Noncommutative Algebra Year (19992000) at the Mathematical Sciences Research Institute in Berkeley, and they thank MSRI for its support
Communicated by:
Lance W. Small
Article copyright:
© Copyright 2004
American Mathematical Society
