Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bordism groups of special generic mappings


Author: Rustam Sadykov
Journal: Proc. Amer. Math. Soc. 133 (2005), 931-936
MSC (2000): Primary 55N22; Secondary 55P42, 57R45
DOI: https://doi.org/10.1090/S0002-9939-04-07586-0
Published electronically: August 24, 2004
MathSciNet review: 2113946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Pontrjagin-Thom construction expresses a relation between the oriented bordism groups of framed immersions $M^m\looparrowright \mathbb{R} ^n, m<n$, and the stable homotopy groups of spheres. We apply the Pontrjagin-Thom construction to the oriented bordism groups $\mathcal M_{m,n}$ of mappings $M^m\to \mathbb{R} ^n, m>n$, with mildest singularities. Recently, O. Saeki showed that for $m\ge 6$, the group $\mathcal M_{m,1}$ is isomorphic to the group of smooth structures on the sphere of dimension $m$. Generalizing, we prove that $\mathcal M_{m,n}$ is isomorphic to the $n$-th stable homotopy group $\pi^{st}_n( \mathrm{BSDiff}_r,\mathrm{BSO}_{r+1})$, $r=m-n$, where $\mathrm{SDiff}_r$ is the group of oriented auto-diffeomorphisms of the sphere $S^{r}$ and $\mathrm{SO}_{r+1}$ is the group of rotations of $S^r$.


References [Enhancements On Off] (What's this?)

  • 1. J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Publ. Math. Inst. Hautes Études Sci., 39 (1970), 5-173. MR 0292089 (45:1176)
  • 2. A. E. Hatcher, A proof of the Smale conjecture, $\mathrm{Diff}(S^3)\simeq \mathrm{O}(4)$, Ann. of Math., 117 (1983), 553-607. MR 0701256 (85c:57008)
  • 3. M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276. MR 0119214 (22:9980)
  • 4. M. A. Kervaire, J. W. Milnor, Groups of homotopy spheres: I, Ann. of Math., 77 (1963), 504-537. MR 0148075 (26:5584)
  • 5. S. P. Novikov, Differentiable sphere bundles, Amer. Math. Soc. Transl., 63 (1967), 217-244. MR 0174059 (30:4266)
  • 6. O. Saeki, Topology of special generic maps of manifolds into Euclidean spaces, Topology Appl., 49 (1993), 265-293. MR 1208678 (93m:57031)
  • 7. O. Saeki, Topology of special generic maps into $\mathbb{R} ^3$, Mat. Contemp., 5 (1993), 161-186. MR 1305180 (95k:57037)
  • 8. O. Saeki, Cobordism groups of special generic functions and groups of homotopy spheres, Japan. J. Math., 28 (2002), 287-297. MR 1947905 (2003k:57035)
  • 9. P. Selick, Introduction to homotopy theory, Fields Institute Monographs, AMS, Providence, Rhode Island, 1997. MR 1450595 (98h:55001)
  • 10. S. Smale, Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626. MR 0112149 (22:3004)
  • 11. R. E. Stong, Notes on cobordism theory, Princeton University Press and the University of Tokyo Press, Princeton, New Jersey, 1968. MR 0248858 (40:2108)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55N22, 55P42, 57R45

Retrieve articles in all journals with MSC (2000): 55N22, 55P42, 57R45


Additional Information

Rustam Sadykov
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611

DOI: https://doi.org/10.1090/S0002-9939-04-07586-0
Keywords: Pontrjagin-Thom construction, special generic mappings, bordisms
Received by editor(s): August 14, 2003
Received by editor(s) in revised form: November 10, 2003
Published electronically: August 24, 2004
Communicated by: Paul Goerss
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society