Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterization of scaling functions in a multiresolution analysis


Authors: P. Cifuentes, K. S. Kazarian and A. San Antolín
Journal: Proc. Amer. Math. Soc. 133 (2005), 1013-1023
MSC (2000): Primary 42C15; Secondary 42C30
DOI: https://doi.org/10.1090/S0002-9939-04-07786-X
Published electronically: November 19, 2004
MathSciNet review: 2117202
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the scaling functions of a multiresolution analysis in a general context, where instead of the dyadic dilation one considers the dilation given by a fixed linear map $A: \mathbb{R} ^n\rightarrow \mathbb{R} ^n$ such that $A(\mathbb{Z} ^n) \subset \mathbb{Z} ^n$ and all (complex) eigenvalues of $A$ have absolute value greater than $1.$ In the general case the conditions depend on the map $A.$ We identify some maps for which the obtained condition is equivalent to the dyadic case, i.e., when $A$is a diagonal matrix with all numbers in the diagonal equal to $2.$ There are also easy examples of expanding maps for which the obtained condition is not compatible with the dyadic case. The complete characterization of the maps for which the obtained conditions are equivalent is out of the scope of the present note.


References [Enhancements On Off] (What's this?)

  • 1. A. Bruckner; Differentiation of real functions, Lecture Notes in Mathematics, 659. Springer, Berlin, 1978. MR 0507448 (80h:26002)
  • 2. C. Boor, R. DeVore, A. Ron; On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993), 123-166. MR 1215767 (94k:41048)
  • 3. Charles K. Chui; An Introduction to Wavelets, Academic Press, Inc. 1992. MR 1150048 (93f:42055)
  • 4. Ole Christensen; An Introduction to frames and Riesz bases, Birkhäuser, Boston, 2003. MR 1946982 (2003k:42001)
  • 5. X. Dai, D. Larson, D. Speegle; Wavelet sets in $\mathbb{R} ^n$, J. Fourier Anal. Appl., 3 (1989), 451-456. MR 1468374 (98m:42048)
  • 6. I. Daubechies; Ten lectures on wavelets, SIAM, Philadelphia, 1992. MR 1162107 (93e:42045)
  • 7. K. Gröchening, W. R. Madych; Multiresolution analysis, Haar bases and self-similar tilings of $R^n,$ IEEE Trans. Inform. Theory, 38(2) (March 1992), 556-568. MR 1162214 (93i:42001)
  • 8. E. Hernández, G. Weiss; A first course on wavelets, CRC Press, Inc. 1996. MR 1408902 (97i:42015)
  • 9. W. R. Madych; Some elementary properties of multiresolution analyses of $L^2(R^d),$ In Wavelets - a tutorial in theory and applications, Ch. Chui ed., Academic Press (1992), 259-294. MR 1161255 (93k:42018)
  • 10. S. Mallat; Multiresolution approximations and wavelet orthonormal bases of $L^2(R)$, Trans. of Amer. Math. Soc., 315 (1989), 69-87. MR 1008470 (90e:42046)
  • 11. Y. Meyer; Ondelettes et op$\acute{e}$rateurs. I, Hermann, Paris (1990) [ English Translation: Wavelets and operators, Cambridge University Press, (1992).] MR 1085487 (93i:42002)
  • 12. I. P. Natanson; Theory of functions of a real variable, London, vol. II, 1960.
  • 13. R. Strichartz; Construction of orthonormal wavelets, Wavelets: mathematics and applications, 23-50, Stud. Adv. Math., CRC, Boca Raton, FL, 1994. MR 1247513 (94i:42047)
  • 14. P. Wojtaszczyk; A mathematical introduction to wavelets, London Mathematical Society, Student Texts 37 (1997). MR 1436437 (98j:42025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C15, 42C30

Retrieve articles in all journals with MSC (2000): 42C15, 42C30


Additional Information

P. Cifuentes
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: patricio.cifuentes@uam.es

K. S. Kazarian
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: kazaros.kazarian@uam.es

A. San Antolín
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: angel.sanantolin@uam.es

DOI: https://doi.org/10.1090/S0002-9939-04-07786-X
Keywords: Multiresolution analysis, scaling function, Fourier transform, approximate continuity
Received by editor(s): March 6, 2003
Received by editor(s) in revised form: June 19, 2003
Published electronically: November 19, 2004
Additional Notes: The first two authors were partially supported by BFM2001-0189
Communicated by: David R. Larson
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society