Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On a multidimensional form of F. Riesz's ``rising sun" lemma

Authors: A. A. Korenovskyy, A. K. Lerner and A. M. Stokolos
Journal: Proc. Amer. Math. Soc. 133 (2005), 1437-1440
MSC (2000): Primary 42B25
Published electronically: November 22, 2004
MathSciNet review: 2111942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A multidimensional version of the Riesz rising sun lemma is proved by means of a generalized dyadic process.

References [Enhancements On Off] (What's this?)

  • 1. A.S. Besicovitch, On differentiation of Lebesgue double integrals, Fundam. Math. 25 (1935), 209-216.
  • 2. A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 0052553,
  • 3. Loukas Grafakos and Stephen Montgomery-Smith, Best constants for uncentred maximal functions, Bull. London Math. Soc. 29 (1997), no. 1, 60–64. MR 1416408,
  • 4. Miguel de Guzmán, Differentiation of integrals in 𝑅ⁿ, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661
  • 5. I. Klemes, A mean oscillation inequality, Proc. Amer. Math. Soc. 93, no. 3, (1985), 497-500. MR 0774010 (86c:26024)
  • 6. A. A. Korenovskiĭ, The connection between mean oscillations and exact exponents of summability of functions, Mat. Sb. 181 (1990), no. 12, 1721–1727 (Russian); English transl., Math. USSR-Sb. 71 (1992), no. 2, 561–567. MR 1099524,
  • 7. A. A. Korenovskiĭ, The inverse Hölder inequality, the Muckenhoupt condition, and equimeasurable permutations of functions, Dokl. Akad. Nauk 323 (1992), no. 2, 229–232 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 45 (1992), no. 2, 301–304 (1993). MR 1191537
  • 8. A. A. Korenovskiĭ, Sharp extension of a reverse Hölder inequality and the Muckenhoupt condition, Mat. Zametki 52 (1992), no. 6, 32–44, 158 (Russian, with Russian summary); English transl., Math. Notes 52 (1992), no. 5-6, 1192–1201 (1993). MR 1208001,
  • 9. A.A. Korenovskyy, On the Gurov-Reshetnyak class of functions, submitted.
  • 10. A.A. Korenovskyy, The Riesz rising sun lemma for several variables and John-Nirenberg inequality, Math. Notes, to appear.
  • 11. F. Riesz, Sur l'existence de la dérivée des fonctions monotones et sur quelques problèmes qui s'y rattachent, Acta Sci. Math. Szeged 5 (1932), 208-221.
  • 12. F. Riesz, Sur un théorème de maximum de MM. Hardy et Littlewood, J. London Math. Soc. 7(1932), 10-13.
  • 13. P. Sjögren, A remark on the maximal function for measures in ${\mathbb R}^n$, Amer. J. Math. 105(1983), 1231-1233. MR 0714775 (86a:28003)
  • 14. Elias M. Stein, Singular integrals: the roles of Calderón and Zygmund, Notices Amer. Math. Soc. 45 (1998), no. 9, 1130–1140. MR 1640159

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25

Retrieve articles in all journals with MSC (2000): 42B25

Additional Information

A. A. Korenovskyy
Affiliation: Department of Mathematical Analysis, IMEM, National University of Odessa, Dvoryanskaya, 2, 65026 Odessa, Ukraine

A. K. Lerner
Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel

A. M. Stokolos
Affiliation: Department of Mathematical Sciences, DePaul University, Chicago, Illinois, 60614

Keywords: ``Rising sun" lemma, dyadic property, differential basis
Received by editor(s): August 13, 2003
Received by editor(s) in revised form: January 15, 2004
Published electronically: November 22, 2004
Additional Notes: The work of the first author was partially supported by the France-Ukraine program of scientific collaboration “DNIPRO"
Communicated by: Andreas Seeger
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society