A vectorial inverse nodal problem

Authors:
Yan-Hsiou Cheng, Chung-Tsun Shieh and C. K. Law

Journal:
Proc. Amer. Math. Soc. **133** (2005), 1475-1484

MSC (2000):
Primary 34B24, 34C10

DOI:
https://doi.org/10.1090/S0002-9939-04-07679-8

Published electronically:
November 19, 2004

MathSciNet review:
2111948

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the vectorial Sturm-Liouville problem:

where is a continuous symmetric matrix-valued function defined on , and and are real symmetric matrices. An eigenfunction of the above problem is said to be of type (CZ) if any isolated zero of its component is a nodal point of . We show that when , there are infinitely many eigenfunctions of type (CZ) if and only if are simultaneously diagonalizable. This indicates that can be reconstructed when all except a finite number of eigenfunctions are of type (CZ). The results supplement a theorem proved by Shen-Shieh (the second author) for Dirichlet boundary conditions. The proof depends on an eigenvalue estimate, which seems to be of independent interest.

**1.**Z. S. Agranovich and V. A. Marchenko,*The inverse problem of scattering theory*, Translated from the Russian by B. D. Seckler, Gordon and Breach Science Publishers, New York-London, 1963. MR**0162497****2.**Robert Carlson,*Large eigenvalues and trace formulas for matrix Sturm-Liouville problems*, SIAM J. Math. Anal.**30**(1999), no. 5, 949–962. MR**1709782**, https://doi.org/10.1137/S0036141098340417**3.**O.H. Hald and J.R. McLaughlin, Solutions of inverse nodal problems,*Inverse Problems***5**(1989), 307-347. MR**0999065 (90c:34015)****4.**Ya-Ting Chen, Y. H. Cheng, C. K. Law, and J. Tsay,*𝐿¹ convergence of the reconstruction formula for the potential function*, Proc. Amer. Math. Soc.**130**(2002), no. 8, 2319–2324. MR**1896415**, https://doi.org/10.1090/S0002-9939-02-06297-4**5.**Hua-Huai Chern, C. K. Law, and Hung-Jen Wang,*Extensions of Ambarzumyan’s theorem to general boundary conditions*, J. Math. Anal. Appl.**263**(2001), no. 2, 333–342. MR**1866051**, https://doi.org/10.1006/jmaa.2001.7472**6.**I. C. Gohberg and M. G. Kreĭn,*Theory and applications of Volterra operators in Hilbert space*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. MR**0264447****7.**C. K. Law, Chao-Liang Shen, and Ching-Fu Yang,*The inverse nodal problem on the smoothness of the potential function*, Inverse Problems**15**(1999), no. 1, 253–263. MR**1675348**, https://doi.org/10.1088/0266-5611/15/1/024**8.**J.R. McLaughlin, Inverse spectral theory using nodal points as data - a uniqueness result,*J. Diff. Eqns.***73**(1988), 354-362. MR**0943946 (89f:34035)****9.**C.L. Shen, On the nodal sets of the eigenfunctions of the string equation,*SIAM J. Math. Anal.***19**(1988), No. 6, 1419-1424. MR**0965261 (89j:34035)****10.**Chao-Liang Shen and Chung-Tsun Shieh,*Two inverse eigenvalue problems for vectorial Sturm-Liouville equations*, Inverse Problems**14**(1998), no. 5, 1331–1343. MR**1654647**, https://doi.org/10.1088/0266-5611/14/5/016**11.**Chao-Liang Shen and Chung-Tsun Shieh,*On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equation and some related spectral problems*, Proc. Amer. Math. Soc.**127**(1999), no. 10, 2943–2952. MR**1622977**, https://doi.org/10.1090/S0002-9939-99-05031-5**12.**Chao-Liang Shen and Chung-Tsun Shieh,*An inverse nodal problem for vectorial Sturm-Liouville equations*, Inverse Problems**16**(2000), no. 2, 349–356. MR**1766766**, https://doi.org/10.1088/0266-5611/16/2/306**13.**Xue-Feng Yang,*A solution of the inverse nodal problem*, Inverse Problems**13**(1997), no. 1, 203–213. MR**1435878**, https://doi.org/10.1088/0266-5611/13/1/016

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34B24,
34C10

Retrieve articles in all journals with MSC (2000): 34B24, 34C10

Additional Information

**Yan-Hsiou Cheng**

Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China

Email:
jengyh@math.nsysu.edu.tw

**Chung-Tsun Shieh**

Affiliation:
Department of Mathematics, Tamkang University, Tamsui, Taipei County, Taiwan 251, Republic of China

Email:
ctshieh@math.tku.edu.tw

**C. K. Law**

Affiliation:
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Republic of China

Email:
law@math.nsysu.edu.tw

DOI:
https://doi.org/10.1090/S0002-9939-04-07679-8

Received by editor(s):
August 27, 2003

Received by editor(s) in revised form:
February 4, 2004

Published electronically:
November 19, 2004

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.