Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new degree bound for invariant rings


Author: Jianjun Chuai
Journal: Proc. Amer. Math. Soc. 133 (2005), 1325-1333
MSC (2000): Primary 13A50
DOI: https://doi.org/10.1090/S0002-9939-04-07787-1
Published electronically: November 19, 2004
MathSciNet review: 2111938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a new degree bound for polynomial invariant rings of finite groups and give some applications.


References [Enhancements On Off] (What's this?)

  • 1. A. Broer, Remarks on invariant theory of finite groups, Preprint, Université de Montréal, Montréal, (1997).
  • 2. H. E. A. Campbell, A. V. Geramita, I. P. Hughes, R. J. Shank and D. L. Wehlau, Non-Cohen-Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants, Canad. Math. Bull. 42(2)(1999), 155-161. MR 1692004 (2000b:13005)
  • 3. H. E. A. Campbell and I. P. Hughes, Vector invariants of $U_2(\mathbf{F}_p)$: A proof of a conjecture of Richman, Adv. in Math. 126(1997), 1-20. MR 1440251 (98c:13007)
  • 4. Jianjun Chuai, Two-dimensional vector invariant rings of Abelian $p$-groups, J. of Alg. 266(1)(2003), 362-373. MR 1994545 (2004e:13010)
  • 5. H. Derksen and G. Kemper, Computational invariant theory, Springer, (2002). MR 1918599 (2003g:13004)
  • 6. J. A. Eagon and M. Hochster, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93(1971), 1020-1058. MR 0302643 (46:1787)
  • 7. P. Fleischmann, On invariants theory of finite groups, Preprint, Invariant Theory Workshop at Queen's University, (2002).
  • 8. P. Fleischmann, The Noether bound in invariant theory of finite groups, Adv. in Math. 156(2000), 23-32. MR 1800251 (2001k:13009)
  • 9. J. Fogarty, On Noether's bound for polynomial invariants of a finite group, Elec. Res. Announ. of the Amer. Math. Soc. 7(2001), 5-7. MR 1826990 (2002a:13002)
  • 10. M. Goebel, Computing bases for rings of permutation-invariant polynomials, J. Symb. Comp., 19 (1995), 285-291. MR 1339909 (96f:13006)
  • 11. I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Alg., 28(4) (2000), 2059-2088. MR 1747371 (2001b:13009)
  • 12. D. B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring: the general case, Preprint, (2001).
  • 13. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77(1916), 89-92.
  • 14. D. R. Richman, On vector invariants over finite fields, Adv. in Math. 81(1990), 30-65. MR 1051222 (91g:15020)
  • 15. L. Smith, Polynomial invariants of finite groups, A. K. Peter, Ltd. 1995. MR 1328644 (96f:13008)
  • 16. R. P. Stanley, Polynomial invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. 1(3) (1979), 475-511. MR 0526968 (81a:20015)
  • 17. H. Weyl, The classical groups, Princeton University Press, Princeton, NJ, (1939). MR 0000255 (1:42c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A50

Retrieve articles in all journals with MSC (2000): 13A50


Additional Information

Jianjun Chuai
Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Email: chuai@mast.queensu.ca

DOI: https://doi.org/10.1090/S0002-9939-04-07787-1
Keywords: Invariant ring, degree bound
Received by editor(s): September 23, 2003
Received by editor(s) in revised form: January 30, 2004
Published electronically: November 19, 2004
Additional Notes: This research was partially supported by NSERC
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society