Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Embedding $\ell_1$ as Lipschitz functions

Author: M. Raja
Journal: Proc. Amer. Math. Soc. 133 (2005), 2395-2400
MSC (2000): Primary 46B20, 46B22, 54E99
Published electronically: March 15, 2005
MathSciNet review: 2138882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K$ be a compact Hausdorff space and let $d$ be a lower semicontinuous metric on it. We prove that $K$ is fragmented by $d$ if, and only if, $C(K)$ contains no copy of $\ell_1$ made up of Lipschitz functions with respect to $d$. As applications we obtain a characterization of Asplund Banach spaces and Radon-Nikodým compacta.

References [Enhancements On Off] (What's this?)

  • 1. Y. BENYAMINI, J. LINDENSTRAUSS, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications 48, 2000. MR 1727673 (2001b:46001)
  • 2. B. CASCALES, I. NAMIOKA, J. ORIHUELA, The Lindelöf property in Banach spaces, Studia Math. 154 (2003), 165-192. MR 1949928 (2003m:54028)
  • 3. R. DEVILLE, G. GODEFROY, V. ZIZLER, Smoothness and Renorming in Banach Spaces, Pitman Monog. and Surveys 64, 1993. MR 1211634 (94d:46012)
  • 4. G. CHOQUET, Topology, Academic Press, New York-London, 1966. MR 0193605 (33:1823)
  • 5. R.C. JAMES A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. MR 0417763 (54:5811)
  • 6. J.E. JAYNE, I. NAMIOKA, C.A. ROGERS, Norm fragmented weak$^{*}$ compact sets, Collect. Math. 41 (1990), 161-188. MR 1149650 (93d:46035)
  • 7. J. LINDENSTRAUSS, C. STEGALL, Examples of separable spaces which do not contain $\ell_{1}$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105. MR 0390720 (52:11543)
  • 8. E. MATOUSKOVA, Extensions of continuous and Lipschitz functions, Canad. Math. Bull. 43 (2000), 208-217. MR 1754025 (2001c:54009)
  • 9. P.R. MEYER, The Baire order problem for compact spaces, Duke Math. J. 33 (1966), 33-39. MR 0190897 (32:8307)
  • 10. I. NAMIOKA, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281. MR 0933504 (89i:46021)
  • 11. H. ROSENTHAL, A characterization of Banach spaces containing $\ell_1$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. MR 0358307 (50:10773)
  • 12. S. TODORCEVIC, Topics in Topology, Lecture Notes in Mathematics 1652, Springer-Verlag, Berlin, 1997. MR 1442262 (98g:54002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20, 46B22, 54E99

Retrieve articles in all journals with MSC (2000): 46B20, 46B22, 54E99

Additional Information

M. Raja
Affiliation: Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, 91904, Jerusalem, Israel
Address at time of publication: Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain

Received by editor(s): March 23, 2004
Published electronically: March 15, 2005
Additional Notes: This research was supported by a grant of Professor J. Lindenstrauss from the Israel Science Foundation, and by research grant BFM2002-01719, MCyT (Spain).
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society