Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quasi-hyperbolic planes in hyperbolic groups


Authors: Mario Bonk and Bruce Kleiner
Journal: Proc. Amer. Math. Soc. 133 (2005), 2491-2494
MSC (2000): Primary 20F67
DOI: https://doi.org/10.1090/S0002-9939-05-07564-7
Published electronically: April 12, 2005
MathSciNet review: 2146190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The hyperbolic plane $\mathbb{H}^2$ admits a quasi-isometric embedding into every hyperbolic group which is not virtually free.


References [Enhancements On Off] (What's this?)

  • 1. P. Assouad, Plongements lipschitziens dans ${\bf R}\sp{n}$, Bull. Soc. Math. France 111 (1983), 429-448. MR 0763553 (86f:54050)
  • 2. M. Bestvina and G. Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), 469-481. MR 1096169 (93j:20076)
  • 3. M. Bonk and B. Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), no. 1, 81-106. MR 1949785 (2004b:53059)
  • 4. M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), 266-306. MR 1771428 (2001g:53077)
  • 5. B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999), 3673-3686. MR 1624089 (2000d:20056)
  • 6. B.H. Bowditch, Boundaries of strongly accessible hyperbolic groups, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 51-97 (electronic). MR 1668331 (2000d:20059)
  • 7. D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418 (2002e:53053)
  • 8. D.J. Collins and H. Zieschang, Combinatorial group theory and fundamental groups, Algebra VII. Combinatorial group theory. Applications to Geometry, Encycl. Math. Sci. 58, Springer, Berlin, 1993, pp. 1-166. MR 1265270
  • 9. É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston, MA, 1990. MR 1086648 (92f:53050)
  • 10. J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • 11. I. Kapovich, Quasiconvexity and amalgams, Internat. J. Algebra Comput. 7 (1997), 771-811. MR 1482968 (98k:20057)
  • 12. F. Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2) 54 (1996), no. 1, 50-74. MR 1395067 (97d:20042)
  • 13. G.A. Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 98-100 (electronic). MR 1412948 (97f:20048)
  • 14. P. Tukia, Spaces and arcs of bounded turning, Michigan Math. J. 43 (1996), 559-584. MR 1420592 (98a:30028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F67

Retrieve articles in all journals with MSC (2000): 20F67


Additional Information

Mario Bonk
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
Email: mbonk@umich.edu

Bruce Kleiner
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
Email: bkleiner@umich.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07564-7
Received by editor(s): January 21, 2003
Published electronically: April 12, 2005
Additional Notes: The first author was supported by NSF grant DMS-0200566.
The second author was supported by NSF grants DMS-9972047 and DMS-0204506.
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society