Isochronicity of a class of piecewise continuous oscillators

Authors:
Francesc Mañosas and Pedro J. Torres

Journal:
Proc. Amer. Math. Soc. **133** (2005), 3027-3035

MSC (2000):
Primary 34C05, 34C15

DOI:
https://doi.org/10.1090/S0002-9939-05-07873-1

Published electronically:
March 31, 2005

MathSciNet review:
2159782

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by a classical pendulum clock model suggested by Andrade in 1920, we study the equation and prove that for a nonlinear analytic the origin is never an isochronous focus or an isochronous center.

**1.**B. Alfawicka, Inverse problems connected with periods of oscillations described .*Ann. Polon. Math.*44 (1984), no. 3, 297-308. MR**0817804 (87d:34015)****2.**B. Alfawicka, Inverse problem connected with half-period function analytic at the origin.*Bull. Polish Acad. Sci. Math. 32*(1984), no. 5-6, 267-274.MR**0785984 (86e:34028)****3.**J. Andrade, Les frottements et l'isochronisme,*C. R. Acad. Sci. Paris*, (1920), 664-665.**4.**C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields.*J. Differential Equations*69 (1987), no. 3, 310-321.MR**0903390 (88i:58050)****5.**A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems.*J. Differential Equations*168 (2000), no. 1, 180-199.MR**1801350 (2001m:34068)****6.**A. Cima, F. Mañosas and J. Villadelprat, Isochronism for several classes of Hamiltonian systems,*J. Differential Equations,*157 (1999), 373-413.MR**1713265 (2000h:34073)****7.**B. Coll, A. Gasull and R. Prohens, Center-focus and isochronous center problems for discontinuous differential equations.*Discrete Contin. Dynam. Systems*6 (2000), no. 3, 609-624. MR**1757390 (2001f:34053)****8.**K. Deimling and P. Szilágyi, Periodic solutions of dry friction problems,*Z. angew. Math. Phys.*45 (1994), 53-60. MR**1259526 (94m:34099)****9.**L. Gavrilov, Isochronism of plane polynomial Hamiltonian systems.*Nonlinearity*10 (1997) 433-448.MR**1438261 (98b:58143)****10.**R.C. Hibbeler,*Mechanics for engineers*, MacMillan Publishing Company, 1985.**11.**M. Urabe, The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity.*Arch. Rational Mech. Anal.*11 (1962), 27-33 MR**0141834 (25:5231)****12.**M. Urabe, Potential forces which yield periodic motions of a fixed period.*J. Math. Mech.*10 (1961), 569-578. MR**0123060 (23:A391)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34C05,
34C15

Retrieve articles in all journals with MSC (2000): 34C05, 34C15

Additional Information

**Francesc Mañosas**

Affiliation:
Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Email:
Francesc.Manosas@uab.es

**Pedro J. Torres**

Affiliation:
Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain

Email:
ptorres@ugr.es

DOI:
https://doi.org/10.1090/S0002-9939-05-07873-1

Keywords:
Isochronous,
center,
focus

Received by editor(s):
March 1, 2004

Received by editor(s) in revised form:
May 27, 2004

Published electronically:
March 31, 2005

Additional Notes:
The first author was partially supported by DGES No. BFM2002-04236-C02-2, BFM2002-01344 and the CONACIT grant number 2001SGR-00173.

The second author was partially supported by D.G.I. BFM2002-01308, Ministerio Ciencia y Tecnología, Spain

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2005
American Mathematical Society