Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Comparison theorems of Hille-Wintner type for dynamic equations on time scales


Authors: Lynn Erbe and Allan Peterson
Journal: Proc. Amer. Math. Soc. 133 (2005), 3243-3253
MSC (2000): Primary 39A10
DOI: https://doi.org/10.1090/S0002-9939-05-08202-X
Published electronically: June 20, 2005
MathSciNet review: 2161146
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain an analogue of the Hille-Wintner comparison theorem for the nonoscillation of second-order linear dynamic equations on time scales. Several examples are given including applications to difference equations.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin-Bohner, M. Bohner, and S.H. Saker, Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations, Electron. Trans. Numer. Anal., to appear.
  • 2. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. MR 1843232 (2002c:34002)
  • 3. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. MR 1962542 (2004d:34003)
  • 4. M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 34(4), (2004), 1239-1254. MR 2095254 (2005e:34113)
  • 5. M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comput. Modelling, 40(3-4), (2004), 249-260. MR 2091058
  • 6. O. Doslý and S. Hilger, A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, J. Comput. Appl. Math., 141(1-2), (2002), 147-158. MR 1908834 (2003f:39015)
  • 7. L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart., 9 (2001), 1-31. MR 1975729 (2004c:39021)
  • 8. L. Erbe, L. Kong and Q. Kong, Telescoping principle for oscillation for second order differential equations on a time scale, Rocky Mountain J. Math., to appear.
  • 9. L. Erbe and A. Peterson. Oscillation criteria for second order matrix dynamic equations on a time scale, J. Comput. Appl. Math., 141(1-2), (2002), 169-185. MR 1908836 (2003e:34023)
  • 10. L. Erbe and A. Peterson, Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. Amer. Math. Soc., 132 (2004), 735-744. MR 2019950 (2004i:39015)
  • 11. L. Erbe and A. Peterson, An oscillation result for a nonlinear dynamic equation on a time scale, Canad. Appl. Math. Quart., to appear.
  • 12. L. Erbe, A. Peterson, and P. Rehák, Comparison Theorems for Linear Dynamic Equations on Time Scales, J. Math. Anal. Appl., 275 (2002), 418-438. MR 1941793 (2003m:39026)
  • 13. L. Erbe, A. Peterson, and S. H. Saker, Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc., 67 (2003), 701-714. MR 1967701 (2003m:34158)
  • 14. L. Erbe, A. Peterson, and M. Simon, Square integrability of Gaussian bells on time scales, Comput. Math. Appl., (2005), to appear.
  • 15. Stefan Hilger, Analysis on measure chains - A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. MR 1066641 (91m:26027)
  • 16. Einar Hille, Nonoscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234-252. MR 0027925 (10:376c)
  • 17. B. Kaymakçalan, V. Lakshmikantham and S. Sivasundaram, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996. MR 1419803 (97j:34002)
  • 18. P. Rehák, Half-linear dynamic equations on time scales: IVP and oscillatory properties, J. Nonlinear Funct. Anal. Appl., 7, (2002), 361-404. MR 1946469 (2003h:34067)
  • 19. A. Ruffing, J. Lorenz, and K. Ziegler, Difference ladder operators for a harmonic Schrödinger oscillator using unitary linear lattices, J. Comp. Appl. Math., 153 (2003), 395-410. MR 1985710 (2004h:81081)
  • 20. Choy-Tak Taam, Nonoscillatory differential equations, Duke Math. J., 19 (1952), 493-497. MR 0051994 (14:557d)
  • 21. A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand. 5 (1957), 255-260. MR 0096867 (20:3349)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 39A10

Retrieve articles in all journals with MSC (2000): 39A10


Additional Information

Lynn Erbe
Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130
Email: lerbe@math.unl.edu

Allan Peterson
Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130
Email: apeterso@math.unl.edu

DOI: https://doi.org/10.1090/S0002-9939-05-08202-X
Keywords: Comparison theorems, linear oscillation, Hille--Wintner, time scale
Received by editor(s): May 21, 2004
Published electronically: June 20, 2005
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society