Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sur les opérateurs de Dunford-Pettis positifs qui sont faiblement compacts


Authors: Belmesnaoui Aqzzouz, Redouane Nouira and Larbi Zraoula
Journal: Proc. Amer. Math. Soc. 134 (2006), 1161-1165
MSC (2000): Primary 46B40, 47H07
DOI: https://doi.org/10.1090/S0002-9939-05-08083-4
Published electronically: October 5, 2005
MathSciNet review: 2196052
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nous donnons des conditions nécessaires et suffisantes pour que tout opérateur de Dunford-Pettis positif sur un treillis de Banach, soit faiblement compact et nous déduisons quelques conséquences.


\begin{abs}We give necessary and sufficient conditions so that every positive Du... ...n a Banach lattice be weakly compact, and we deduce some consequences. \end{abs}


References [Enhancements On Off] (What's this?)

  • 1. C. D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z., 174 (1980), 289-298. MR 0593826 (81m:47053)
  • 2. C. D. Aliprantis and O. Burkinshaw, On weakly compact operators on Banach lattices, Proc. Amer. Math. Soc. 83 (1981), no. 3, 573-578.MR 0627695 (82j:47057)
  • 3. C. D. Aliprantis and O. Burkinshaw, Dunford-Pettis operators on Banach lattices. Trans. Amer. Math. Soc. 274, (1982), no. 1, 227-238.MR 0670929 (84b:47045)
  • 4. C. D. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, 1985.MR 0809372 (87h:47086)
  • 5. C.D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, Mathematical Surveys and Monographs, Vol. 105, American Mathematical Society, Providence, RI, 2003. MR 2011364 (2005b:46010)
  • 6. B. Aqzzouz and R. Nouira, Sur les opérateurs précompacts positifs. C. R. Acad. Sc. Paris, 337, (2003), no. 8, 527-530.MR 2017131 (2004h:46002)
  • 7. Z. L. Chen and A.W. Wickstead, Vector lattices of weakly compact operators on Banach lattices, Trans. Amer. Math. Soc. 352, (2000), no. 1, 397-412.MR 1641095 (2000c:47075)
  • 8. N. J. Kalton and P. Saab, Ideal properties of regular operators between Banach lattices. Illinois Journal of Math. vol. 29 , (1985), no. 3, 382-400.MR 0786728 (87a:47064)
  • 9. A. W. Wickstead, Extremal structure of cones of operators , Quart. J. Math. Oxford Ser. 2, 32 (1981), no. 2, 239-253. MR 0615198 (82i:47069)
  • 10. A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Camb. Phil. Soc. 120 (1996), no. 1, 175-179.MR 1373356 (96m:47067)
  • 11. A.W. Wickstead, Positive compact operators on Banach lattices: some loose ends, Positivity 4 (2000), no. 3, 313-325. MR 1797133 (2001k:47054)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B40, 47H07

Retrieve articles in all journals with MSC (2000): 46B40, 47H07


Additional Information

Belmesnaoui Aqzzouz
Affiliation: Université ibn Tofail, Faculté des Sciences, Département de Mathématiques, Equipe d’analyse Fonctionnelle, B.P. 133, Kenitra, Morocco
Email: baqzzouz@hotmail.com

Redouane Nouira
Affiliation: Université ibn Tofail, Faculté des Sciences, Département de Mathématiques, Equipe d’analyse Fonctionnelle, B.P. 133, Kenitra, Morocco

Larbi Zraoula
Affiliation: Université ibn Tofail, Faculté des Sciences, Département de Mathématiques, Equipe d’analyse Fonctionnelle, B.P. 133, Kenitra, Morocco

DOI: https://doi.org/10.1090/S0002-9939-05-08083-4
Received by editor(s): October 8, 2004
Received by editor(s) in revised form: November 10, 2004
Published electronically: October 5, 2005
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society