Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the reflexivity of multivariable isometries


Author: Jörg Eschmeier
Journal: Proc. Amer. Math. Soc. 134 (2006), 1783-1789
MSC (2000): Primary 47A15; Secondary 47A13, 47B20, 47L45
DOI: https://doi.org/10.1090/S0002-9939-05-08139-6
Published electronically: December 15, 2005
MathSciNet review: 2207494
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A \subset C(K)$ be a unital closed subalgebra of the algebra of all continuous functions on a compact set $ K$ in $ \mathbb{C}^n$. We define the notion of an $ A$-isometry and show that, under a suitable regularity condition needed to apply Aleksandrov's work on the inner function problem, every $ A$-isometry $ T \in L(\mathcal H)^n$ is reflexive. This result applies to commuting isometries, spherical isometries, and more generally, to all subnormal tuples with normal spectrum contained in the Bergman-Shilov boundary of a strictly pseudoconvex or bounded symmetric domain.


References [Enhancements On Off] (What's this?)

  • 1. A.B. Aleksandrov, Inner functions on compact spaces, Funct. Anal. Appl. 18 (1984), 87-98. MR 0745695 (86d:32003)
  • 2. A.B. Aleksandrov, Inner functions: Results, methods, problems, Proc. Int. Cong. Math., Berkeley, 1986, Vol. 1, 699-707. MR 0934272 (89c:32015)
  • 3. A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), 339-350. MR 1066811 (91i:47029)
  • 4. H. Bercovici, A factorization theorem with applications to invariant subspaces and the reflexivity of isometries, Math. Res. Lett. 1 (1994), 511-518. MR 1302394 (95m:47005)
  • 5. H. Bercovici, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math. 56, Amer. Math. Soc., Providence, RI, 1985. MR 0787041 (87g:47091)
  • 6. J.B. Conway, The theory of subnormal operators, Math. Surveys Monogr. 36, Amer. Math. Soc., Providence, RI, 1991. MR 1112128 (92h:47026)
  • 7. J.B. Conway, Towards a functional calculus of subnormal tuples: The minimal normal extension, Trans. Am. Math. Soc. 326 (1991), 543-567. MR 1005077 (91k:47048)
  • 8. J.A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. MR 0278099 (43:3831)
  • 9. M. Didas, Dual algebras generated by von Neumann $ n$-tuples over strictly pseudoconvex sets, Dissertationes Math. 425 (2004). MR 2067612 (2005d:47009)
  • 10. M. Didas, Spherical isometries are reflexive, Preprint, Univ. des Saarlandes, 2004.
  • 11. M. Didas and J. Eschmeier, Subnormal tuples on strictly pseudoconvex and bounded symmetric domains, Acta Sci. Math. (Szeged), to appear.
  • 12. D. Hadwin and E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23. MR 0650190 (83f:47033)
  • 13. W.S. Li and J. McCarthy, Reflexivity of isometries, Studia Math. 124 (1997) 101-105. MR 1447616 (98h:47009)
  • 14. V. Müller and M. Ptak, Spherical isometries are hyporeflexive, Rocky Mountain J. Math. 29 (1999), 677-683. MR 1705481 (2000i:47007)
  • 15. R. Olin and J. Thomson, Algebras of subnormal operators, J. Funct. Anal. 37 (1980), 271-301. MR 0581424 (82a:47024)
  • 16. M. Putinar, Spectral inclusion for subnormal $ n$-tuples, Proc. Amer. Math. Soc. 90 (1984), 405-406. MR 0728357 (85f:47029)
  • 17. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. MR 0192365 (33:590)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A15, 47A13, 47B20, 47L45

Retrieve articles in all journals with MSC (2000): 47A15, 47A13, 47B20, 47L45


Additional Information

Jörg Eschmeier
Affiliation: Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, D–66041 Saarbrücken, Germany
Email: eschmei@math.uni-sb.de

DOI: https://doi.org/10.1090/S0002-9939-05-08139-6
Received by editor(s): January 14, 2005
Received by editor(s) in revised form: January 31, 2005
Published electronically: December 15, 2005
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society