Rank-one completions of partial matrices and completely rank-nonincreasing linear functionals

Authors:
Don Hadwin, K. J. Harrison and J. A. Ward

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2169-2178

MSC (2000):
Primary 15A60

DOI:
https://doi.org/10.1090/S0002-9939-06-08094-4

Published electronically:
March 20, 2006

MathSciNet review:
2213688

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain necessary and sufficient conditions for the existence and the uniqueness of rank-one completions of a partial matrix, and we verify a conjecture of Hadwin and Larson concerning the nature of completely rank-nonincreasing linear functionals defined on pattern subspaces.

**1.**Johnson, C.R., Matrix completion problems: a survey.*Proceedings of Symposia of Applied Mathematics*,**40**, Amer. Math. Soc., Providence, RI, (1990), 171-190. MR**1059486****2.**Hogben, Leslie, Graph theoretic methods for matrix completion problems,*Linear Alg. Appl.,***328**, (2001), 161-202. MR**1823516 (2001k:15031)****3.**Harrison, K.J., Matrix completions and chordal graphs,*International Workshop on Operator Algebras and Operator Theory*,*Acta Math. Sin. (Engl. Ser.)*,**19**, (2003), 577-590. MR**2014037 (2004j:15038)****4.**Rodman, Leiba, Completions of triangular matrices: a survey of results and open problems,*Structured matrices in mathematics, computer science and engineering, II (Boulder, CO, 1999), Contemp. Math.*,**281**, Amer. Math. Soc., Providence, RI, (2001), 279-293. MR**1855997 (2002g:15036)****5.**Laurent, Monique, A tour d'horizon on positive semidefinite and Euclidean distance matrix completion problems,*Topics in semidefinite and interior-point methods (Toronto 1996), Fields Inst. Commun.***18**, Amer. Math. Soc., Providence, RI, (1998), 51-76. MR**1607310 (99c:05135)****6.**Cohen, N., Johnson, C. R., Rodman, L. & Woerdeman, H. J., Ranks of completions of partial matrices,*Operator Theory: Adv. Appl.*,**40**(1989), 165-185. MR**1038313 (91a:15028)****7.**Hadwin, D. & Larson, D., Completely rank nonincreasing maps,*J. Funct. Anal.*,**199**, (2003), 210-227. MR**1966828 (2004d:46066)****8.**Hou, J. & Cui, J., Completely rank nonincreasing linear maps on nest algebras,*Proc. Amer. Math. Soc*.,**132**, (2004), 1419-1428. MR**2053348 (2005b:47073)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
15A60

Retrieve articles in all journals with MSC (2000): 15A60

Additional Information

**Don Hadwin**

Affiliation:
Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824

Email:
don@cisunix.unh.edu

**K. J. Harrison**

Affiliation:
School of Mathematical and Physical Sciences, Murdoch University, Murdoch, W.A. 6150, Australia

Email:
K.Harrison@murdoch.edu.au

**J. A. Ward**

Affiliation:
Faculty of Science, Curtin University, Bentley, W.A. 6102, Australia

Email:
J.Ward@exchange.curtin.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-06-08094-4

Received by editor(s):
April 23, 2002

Received by editor(s) in revised form:
July 15, 2004

Published electronically:
March 20, 2006

Communicated by:
David R. Larson

Article copyright:
© Copyright 2006
American Mathematical Society