Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Global dominated splittings and the $ C^1$ Newhouse phenomenon

Authors: Flavio Abdenur, Christian Bonatti and Sylvain Crovisier
Journal: Proc. Amer. Math. Soc. 134 (2006), 2229-2237
MSC (2000): Primary 37D25, 37D30
Published electronically: March 14, 2006
MathSciNet review: 2213695
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that given a compact $ n$-dimensional boundaryless manifold $ M$, $ n \geq 2$, there exists a residual subset $ \mathcal{R}$ of the space of $ C^1$ diffeomorphisms $ \mathrm{Diff}^1(M)$ such that given any chain-transitive set $ K$ of $ f \in \mathcal{R}$, then either $ K$ admits a dominated splitting or else $ K$ is contained in the closure of an infinite number of periodic sinks/sources. This result generalizes the generic dichotomy for homoclinic classes given by Bonatti, Diaz, and Pujals (2003).

It follows from the above result that given a $ C^1$-generic diffeomorphism $ f$, then either the nonwandering set $ \Omega(f)$ may be decomposed into a finite number of pairwise disjoint compact sets each of which admits a dominated splitting, or else $ f$ exhibits infinitely many periodic sinks/sources (the ``$ C^1$ Newhouse phenomenon"). This result answers a question of Bonatti, Diaz, and Pujals and generalizes the generic dichotomy for surface diffeomorphisms given by Mañé (1982).

References [Enhancements On Off] (What's this?)

  • [A] F. Abdenur, Generic robustness of spectral decompositions, Ann. Sci. École Norm. Sup., 36, 213-224, (2003). MR 1980311 (2004b:37032)
  • [BC] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math. 158, 33-104, (2004). MR 2090361
  • [BD1] C. Bonatti and L.J. Diaz, Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Sci. École Norm. Sup., 32, 135-150, (1999). MR 1670524 (2000e:37015)
  • [BD2] C. Bonatti and L.J. Diaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 96, 171-197, (2002). MR 1985032
  • [BDP] C. Bonatti, L.J. Diaz, and E. Pujals, A $ C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158, 355-418, (2003). MR 2018925
  • [BDV] C. Bonatti, L. Díaz, and M. Viana, Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Encyclopaedia of Mathematical Sciences 102. Mathematical Physics, III. Springer-Verlag, Berlin, (2005). MR 2105774 (2005g:37001)
  • [BGV] C. Bonatti, N. Gourmelon, and T. Vivier, Perturbations of linear cocycles, preprint Institut de Mathématiques de Bourgogne (2004).
  • [C] S. Crovisier, Periodic orbits and chain transitive sets of $ C^1$-diffeomorphisms, preprint Institut de Mathématiques de Bourgogne (2004).
  • [H] S. Hayashi, Connecting invariant manifolds and the solution of the $ C^1$ stability and $ \Omega$-stability conjectures for flows, Ann. of Math., 145, 81-137, (1997); correction Ann. of Math. 150, 353-356, (1999). MR 1432037 (98b:58096); MR 1715329 (2000h:37029)
  • [K] K. Kuratowski, Topology II, Academic Press - PWN - Polish Sci. Publishers Warszawa, (1968). MR 0259835 (41:4467)
  • [M] R. Mañé, An ergodic closing lemma, Ann. of Math., 116, 503-540, (1982). MR 0678479 (84f:58070)
  • [N] S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13, 9-18, (1974). MR 0339291 (49:4051)
  • [P] C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89, 1010-1021, (1967). MR 0226670 (37:2257)
  • [PS] E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math., 151, 961-1023, (2000). MR 1779562 (2001m:37057)
  • [W] L. Wen, Homoclinic tangencies and dominated splittings, Nonlinearity, 15, 1445-1470, (2002). MR 1925423 (2003f:37055)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37D25, 37D30

Retrieve articles in all journals with MSC (2000): 37D25, 37D30

Additional Information

Flavio Abdenur
Affiliation: IMPA, Estrada D. Castorina 110, Jardim Botânico, 22460-010 Rio de Janeiro RJ, Brazil

Christian Bonatti
Affiliation: CNRS - Institut de Mathématiques de Bourgogne, UMR 5584, BP 47 870, 21078 Dijon Cedex, France

Sylvain Crovisier
Affiliation: CNRS - Laboratoire Analyse, Géométrie et Applications, UMR 7539, Université Paris 13, Avenue J.-B. Clément, 93430 Villetaneuse, France

Keywords: Dominated splitting, Newhouse phenomenon, $C^1$-generic dynamics
Received by editor(s): September 21, 2004
Published electronically: March 14, 2006
Communicated by: Michael Handel
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society