Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An obstruction for the mean curvature of a conformal immersion $ S^n\to \mathbb{R}^{n+1}$


Authors: Bernd Ammann, Emmanuel Humbert and Mohameden Ould Ahmedou
Journal: Proc. Amer. Math. Soc. 135 (2007), 489-493
MSC (2000): Primary 53A27, 53A30, 35J60
DOI: https://doi.org/10.1090/S0002-9939-06-08491-7
Published electronically: August 28, 2006
MathSciNet review: 2255295
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a Pohozaev type identity for non-linear eigenvalue equations of the Dirac operator on Riemannian spin manifolds with boundary. As an application, we obtain that the mean curvature $ H$ of a conformal immersion $ S^n\to \mathbb{R}^{n+1}$ satisfies $ \int \partial_X H=0$ where $ X$ is a conformal vector field on $ S^n$ and where the integration is carried out with respect to the Euclidean volume measure of the image. This identity is analogous to the Kazdan-Warner obstruction that appears in the problem of prescribing the scalar curvature on $ S^n$ inside the standard conformal class.


References [Enhancements On Off] (What's this?)

  • [Ba98] C. Bär,
    Extrinsic bounds for eigenvalues of the Dirac operator,
    Ann. Global Anal. Geom., 16 (1998), 573-596. MR 1651379 (99k:58183)
  • [BE87] J.-P. Bourguignon and J.-P. Ezin.
    Scalar curvature functions in a conformal class of metrics and conformal transformations.
    Trans. Amer. Math. Soc., 301 (1987), 723-736. MR 0882712 (88e:53054)
  • [BG92] J.-P. Bourguignon and P. Gauduchon,
    Spineurs, opérateurs de Dirac et variations de métriques,
    Commun. Math. Phys., 144 (1992), 581-599.. MR 1158762 (93h:58164)
  • [DR99] O. Druet and F. Robert, On the equivariance of the Kazdan-Warner and the Pohozaev identities,
    Preprint, 1999.
  • [Fr98] T. Friedrich,
    On the spinor representation of surfaces in Euclidean $ 3$-space,
    J. Geom. Phys., 28 (1998), 143-157. MR 1653146 (99i:53057)
  • [Fri00] T. Friedrich,
    Dirac operators in Riemannian geometry,
    Graduate Studies in Mathematics, vol. 25, Amer. Math. Soc., Providence, RI, 2000. MR 1777332 (2001c:58017)
  • [Hi86] O. Hijazi,
    A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors,
    Comm. Math. Phys., 104 (1986), 151-162. MR 0834486 (87j:58096)
  • [Ht74] N. Hitchin,
    Harmonic spinors,
    Adv. Math., 14 (1974), 1-55. MR 0358873 (50:11332)
  • [KW75] J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure,
    J. of Diff. Geom., 10 (1975), 113-134. MR 0365409 (51:1661)
  • [KS96] R. Kusner and N. Schmitt,
    The spinor representation of surfaces in space,
    Preprint, http://www.arxiv.org/abs/dg-ga/9610005, 1996.
  • [Po65] S.I. Pohozaev, Eigenfunctions of the equation $ \Delta u + \lambda f(u) = 0$,
    Soviet Math. Dokl., 6 (1965), 1408-1411 (English). Translation of Dokl. Akad. Nauk SSSR, 165 (1965), 36-39 (Russian). MR 0192184 (33:411)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53A27, 53A30, 35J60

Retrieve articles in all journals with MSC (2000): 53A27, 53A30, 35J60


Additional Information

Bernd Ammann
Affiliation: Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France
Email: ammann@iecn.u-nancy.fr

Emmanuel Humbert
Affiliation: Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France
Email: humbert@iecn.u-nancy.fr

Mohameden Ould Ahmedou
Affiliation: Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Email: ahmedou@analysis.mathematik.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0002-9939-06-08491-7
Received by editor(s): June 28, 2005
Received by editor(s) in revised form: September 6, 2005
Published electronically: August 28, 2006
Communicated by: Mikhail Shubin
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society