Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Algebras generated by the disc algebra and bounded harmonic functions


Author: Alexander J. Izzo
Journal: Proc. Amer. Math. Soc. 135 (2007), 1065-1071
MSC (2000): Primary 46J10, 46J15, 30H05
DOI: https://doi.org/10.1090/S0002-9939-06-08547-9
Published electronically: September 26, 2006
MathSciNet review: 2262907
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ denote the open unit disc, and let $ A(D)$ denote the disc algebra. The subsets $ E$ of $ \partial D$ such that the inclusion $ A(D)[f,{\overline f}]\supset C(\overline D)$ holds for every nonconstant $ f\in H^\infty (D)$ continuous on $ E$, or the inclusion $ A(D)[f] \supset C(\overline D)$ holds for every bounded harmonic nonholomorphic function $ f$ on $ D$ continuous on $ E$, are characterized. In the first case the condition is that $ E$ has positive measure, and in the second case that $ E$ has full measure in $ \partial D$.


References [Enhancements On Off] (What's this?)

  • 1. A. B. Aleksandrov, Measurable partitions of the circle induced by inner functions, Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 149 (1986), Issled. Linein. Teor. Funktsii XV, 103-106, 188; translation in J. Soviet Math. 42 (1988), no. 2, 1610-1613. MR 0849298 (87i:30065)
  • 2. H. Alexander and J. Wermer, Several Complex Variables and Banach Algebras, 3rd ed., Springer-Verlag, New York, 1998. MR 1482798 (98g:32002)
  • 3. S. Axler and A. Shields, Algebras generated by analytic and harmonic functions, Indiana Univ. Math. J. 36 (1987), 631-638. MR 0905614 (88h:46102)
  • 4. E. M. Cirka, Approximation by holomorphic functions on smooth manifolds in $ {\mathbb{C}}^{n}$, Mat. Sb. 78 (1969), 101-123; English transl., Math. USSR Sb. 7 (1969), 95-114. MR 0239121 (39:480)
  • 5. J. Détraz, Algèbres de fonctions analytiques dans le disque, Ann. Sci. École Norm. Sup. 3 (1970), 313-352. MR 0435421 (55:8381)
  • 6. A. M. Davie and A. Stray, Interpolation sets for analytic functions, Pacific J. Math. 42 (1972), 33-37. MR 0313517 (47:2071)
  • 7. P. Fatou, Series trigonométriques et séries de Taylor, Acta Math., vol. 30, 1906.
  • 8. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 0628971 (83g:30037)
  • 9. W. K. Hayman, Identity theorems for functions of bounded characteristic, J. London Math. Soc. (2) 58 (1998), 127-140. MR 1666094 (99m:30073)
  • 10. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. MR 0133008 (24:A2844)
  • 11. E. A. Heard and J. H. Wells, An interpolation problem for subalgebras of $ H^{\infty }$, Pacific J. Math. 28 (1969), 543-553. MR 0243359 (39:4681)
  • 12. A. J. Izzo, Algebras containing bounded holomorphic functions, Indiana Univ. Math. J. 52 (2003), 1305-1342. MR 2010729 (2004h:46055)
  • 13. A. J. Izzo, Algebras generated by holomorphic and harmonic functions on the disc, Bull. London Math. Soc. 37 (2005), 761-770. MR 2164839 (2006d:46063)
  • 14. A. J. Izzo, Some algebras of bounded functions on the disc, Math. Reports Academy Sci. Canada 27 (2005), 72-75. MR 2155659 (2006a:30054)
  • 15. A. L. Matheson and M. I. Stessin, Cauchy transforms of characteristic functions and algebras generated by inner functions, Proc. Amer. Math. Soc. 133 (2005), 3361-3370. MR 2161161

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46J10, 46J15, 30H05

Retrieve articles in all journals with MSC (2000): 46J10, 46J15, 30H05


Additional Information

Alexander J. Izzo
Affiliation: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403
Email: aizzo@math.bgsu.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08547-9
Received by editor(s): January 12, 2005
Received by editor(s) in revised form: November 1, 2005
Published electronically: September 26, 2006
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society