Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sharp Berezin Lipschitz estimates


Author: L. A. Coburn
Journal: Proc. Amer. Math. Soc. 135 (2007), 1163-1168
MSC (2000): Primary 47B32; Secondary 32A36
DOI: https://doi.org/10.1090/S0002-9939-06-08569-8
Published electronically: October 13, 2006
MathSciNet review: 2262921
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: F.A. Berezin introduced a general ``symbol calculus" for linear operators on reproducing kernel Hilbert spaces. For the Segal-Bargmann space $ H^2({\text{\bf C}}^n,d\mu )$ of Gaussian square-integrable entire functions on complex $ n$-space, $ {\text{\bf C}}^n$, or for the Bergman spaces $ A^2 (\Omega)$ of Euclidean volume square-integrable holomorphic functions on bounded domains $ \Omega$ in $ {\text{\bf C}}^n$, we show here that earlier Lipschitz estimates for Berezin symbols of arbitrary bounded operators are sharp.


References [Enhancements On Off] (What's this?)

  • 1. S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J., 47 (1998), 387-400. MR 1647896 (99i:47045)
  • 2. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Communications on Pure and Applied Mathematics, 14 (1961), 187-214. MR 0157250 (28:486)
  • 3. F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR Izv., 6 (1972), 1117-1151. MR 0350504 (50:2996)
  • 4. F. A. Berezin, Quantization, Math. USSR Izv., 8 (1974), 1109-1163. MR 0395610 (52:16404)
  • 5. D. Bèkollè, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 93 (1990), 310-350. MR 1073289 (91j:32034)
  • 6. C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Transactions AMS, 301 (1987), 813-829. MR 0882716 (88c:47044)
  • 7. C. A. Berger and L. A. Coburn, Heat flow and Berezin-Toeplitz estimates, American Journal of Mathematics, 116 (1994), 563-590. MR 1277446 (95g:47038)
  • 8. L. A. Coburn, A Lipschitz estimate for Berezin's operator calculus, Proceedings of the American Mathematical Society, 133 (2005), 127-131. MR 2085161 (2005e:47060)
  • 9. M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Equations Operator Theory, 33 (1999), 426-455. MR 1682815 (2000h:47050a)
  • 10. M. Engliš and G. Zhang, On the derivatives of the Berezin transform, Proceedings of the American Mathematical Society, 134 (2006), 2285-2294.
  • 11. G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, 1989. MR 0983366 (92k:22017)
  • 12. V. Guillemin, Toeplitz operators in $ n$ dimensions, Integral Equations and Operator Theory, 7 (1984), 145-205. MR 0750217 (86i:58130)
  • 13. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs 18, American Mathematical Society, Providence, 1969. MR 0246142 (39:7447)
  • 14. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 0514561 (80k:53081)
  • 15. S. Krantz, Function theory of several complex variables, Wiley-Interscience, New York, 1982. MR 0635928 (84c:32001)
  • 16. T. Mazur, P. Pflug and M. Skwarczynski, Invariant distances related to the Bergman function, Proceedings of the American Mathematical Society, 94 (1985), 72-76. MR 0781059 (86i:32047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B32, 32A36

Retrieve articles in all journals with MSC (2000): 47B32, 32A36


Additional Information

L. A. Coburn
Affiliation: Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260
Email: lcoburn@buffalo.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08569-8
Received by editor(s): October 18, 2005
Received by editor(s) in revised form: November 15, 2005
Published electronically: October 13, 2006
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society