On the Makarov law of the iterated logarithm

Authors:
Hå kan Hedenmalm and Ilgiz Kayumov

Journal:
Proc. Amer. Math. Soc. **135** (2007), 2235-2248

MSC (2000):
Primary 35R35, 35Q35; Secondary 31A05, 31C12, 53B20, 76D27

Published electronically:
February 6, 2007

MathSciNet review:
2299501

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain considerable improvement of Makarov's estimate of the boundary behavior of a general conformal mapping from the unit disk to a simply connected domain in the complex plane. We apply the result to improve Makarov's comparison of harmonic measure with Hausdorff measure on simply connected domains.

**1.**Lennart Carleson,*On the distortion of sets on a Jordan curve under conformal mapping*, Duke Math. J.**40**(1973), 547–559. MR**0330430****2.**Håkan Hedenmalm and Serguei Shimorin,*Weighted Bergman spaces and the integral means spectrum of conformal mappings*, Duke Math. J.**127**(2005), no. 2, 341–393. MR**2130416**, 10.1215/S0012-7094-04-12725-3**3.**H. Hedenmalm, S. Shimorin,*On the universal integral means spectrum of conformal mappings near the origin*, Proc. Amer. Math. Soc., to appear.**4.**I. R. Kayumov,*The integral means spectrum for lacunary series*, Ann. Acad. Sci. Fenn. Math.**26**(2001), no. 2, 447–453. MR**1833250****5.**I. R. Kayumov,*The law of the iterated logarithm for locally univalent functions*, Ann. Acad. Sci. Fenn. Math.**27**(2002), no. 2, 357–364. MR**1921312****6.**I. R. Kayumov,*On the law of the iterated logarithm for conformal mappings*, Math. Notes**79**(2006), 139-142.**7.**I. R. Kayumov,*Lower estimates for integral means of univalent functions*, Ark. Mat. (to appear).**8.**N. G. Makarov,*On the distortion of boundary sets under conformal mappings*, Proc. London Math. Soc. (3)**51**(1985), no. 2, 369–384. MR**794117**, 10.1112/plms/s3-51.2.369**9.**Ch. Pommerenke,*Boundary behaviour of conformal maps*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR**1217706****10.**Feliks Przytycki, Mariusz Urbański, and Anna Zdunik,*Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I*, Ann. of Math. (2)**130**(1989), no. 1, 1–40. MR**1005606**, 10.2307/1971475**11.**Feliks Przytycki, Mariusz Urbański, and Anna Zdunik,*Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. II*, Studia Math.**97**(1991), no. 3, 189–225. MR**1100687****12.**Wayne Smith and David A. Stegenga,*Exponential integrability of the quasi-hyperbolic metric on Hölder domains*, Ann. Acad. Sci. Fenn. Ser. A I Math.**16**(1991), no. 2, 345–360. MR**1139802**, 10.5186/aasfm.1991.1625**13.**Mary Weiss,*The law of the iterated logarithm for lacunary trigonometric series.*, Trans. Amer. Math. Soc.**91**(1959), 444–469. MR**0108681**, 10.1090/S0002-9947-1959-0108681-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35R35,
35Q35,
31A05,
31C12,
53B20,
76D27

Retrieve articles in all journals with MSC (2000): 35R35, 35Q35, 31A05, 31C12, 53B20, 76D27

Additional Information

**Hå kan Hedenmalm**

Affiliation:
Department of Mathematics, The Royal Institute of Technology, S – 100 44 Stockholm, Sweden

Email:
haakanh@math.kth.se

**Ilgiz Kayumov**

Affiliation:
Institute of Mathematics and Mechanics, Kazan State University, 420008 Kazan, Russia

Email:
ikayumov@ksu.ru

DOI:
https://doi.org/10.1090/S0002-9939-07-08772-2

Keywords:
Conformal mapping,
law of the iterated logarithm

Received by editor(s):
October 26, 2005

Received by editor(s) in revised form:
March 29, 2006

Published electronically:
February 6, 2007

Additional Notes:
Research supported by the Göran Gustafsson Foundation and by the Russian Fund of Basic Research (05-01-00523, 03-01-00015).

Communicated by:
Juha M. Heinonen

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.