Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Universality of Asplund spaces

Authors: Petr Hájek, Gilles Lancien and Vicente Montesinos
Journal: Proc. Amer. Math. Soc. 135 (2007), 2031-2035
MSC (2000): Primary 46B30, 46B03
Published electronically: February 28, 2007
MathSciNet review: 2299476
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given any infinite cardinal $ \tau$, there exists no Banach space of density $ \tau$, which is Asplund or has the Point of Continuity Property and is universal for all reflexive spaces of density $ \tau$.

References [Enhancements On Off] (What's this?)

  • [AB] S. Argyros and Y. Benyamini, Universal WCG Banach spaces and universal Eberlein compacts, Isr. J. Math. 58 (1987), 305-320. MR 0917361 (89d:46016)
  • [AM] S. Argyros and S. Mercourakis, On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), 395-446. MR 1226181 (94i:46016)
  • [Be] M. Bell, Universal uniform Eberlein compact spaces, Proc. AMS 128 (2000), 2191-2197. MR 1676311 (2000m:54019)
  • [B] J. Bourgain, On separable Banach spaces universal for all separable reflexive spaces, Proc. AMS 79 (1980), 241-246. MR 0565347 (81f:46021)
  • [DFJP] W. Davis, T. Figiel, W.B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Func. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs 64 (1993). MR 1211634 (94d:46012)
  • [F] M. Fabian, Gateaux Differentiability of Convex Functions and Topology Canadian Math. Soc. Books, John Wiley (1997). MR 1461271 (98h:46009)
  • [FHHMPZ] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler, Functional analysis and infinite dimensional geometry, Canadian Math. Soc. Books, Springer-Verlag, (2001). MR 1831176 (2002f:46001)
  • [HMVZ] P. Hájek, V. Montesinos, J. Vanderwerff and V. Zizler, Biorthogonal systems in Banach spaces, monograph in preparation.
  • [J] T. Jech, Set theory, Academic Press (1978). MR 0506523 (80a:03062)
  • [L] G. Lancien, Dentability indices and locally uniformly convex renormings, Rocky Mtn. J. Math. 23 (1993), 635-647. MR 1226193 (94h:46026)
  • [L2] G. Lancien, A survey on the Szlenk index and some of its applications. To appear in RACSAM.
  • [M] R. D. Mauldin (Ed.), The Scottish Book, Birkhauser (1981). MR 0666400 (84m:00015)
  • [S] W. Szlenk, The non-existence of a separable reflexive Banach space, universal for all reflexive Banach spaces, Studia Math. 30 (1968), 53-61. MR 0227743 (37:3327)
  • [W] P. Wojtasczyk, On separable Banach spaces containing all separable reflexive Banach spaces, Studia Math. 37 (1970), 197-202. MR 0308750 (46:7864)
  • [Y] A. S. Yesenin-Volpin, On the existence of the universal bicompact of arbitrary weight, Dokl. Akad. Nauk 68 (1949), 649-652 (in Russian). MR 0031534 (11:165h)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B30, 46B03

Retrieve articles in all journals with MSC (2000): 46B30, 46B03

Additional Information

Petr Hájek
Affiliation: Mathematical Institute, Czech Academy of Science, Žitná 25, 115 67 Praha 1, Czech Republic

Gilles Lancien
Affiliation: Université de Franche Comté, Besancon, 16, Route de Gray, 25030 Besancon Cedex, France

Vicente Montesinos
Affiliation: Department of Applied Mathematics, Telecommunication Engineering Faculty, Polytechnic University of Valencia, 46071 Valencia, Spain

Received by editor(s): January 17, 2006
Published electronically: February 28, 2007
Additional Notes: This work was supported by the following grants: Institutional Research Plan AV0Z10190503, A100190502, GA ČR 201/04/0090 and Project BMF2002-01423
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society