Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A ``deformation estimate" for the Toeplitz operators on harmonic Bergman spaces

Author: Congwen Liu
Journal: Proc. Amer. Math. Soc. 135 (2007), 2867-2876
MSC (2000): Primary 47B35, 47B38; Secondary 53D55
Published electronically: May 8, 2007
MathSciNet review: 2317963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B$ denote the open unit ball in $ \mathbb{R}^n$ for $ n\geq 2$ and $ dx$ the Lebesgue volume measure on $ \mathbb{R}^n$. For $ \alpha>-1$, the (weighted) harmonic Bergman space $ b^{2,\alpha}(B)$ is the space of all harmonic functions $ u$ which are in $ L^2(B,(1-\vert x\vert^2)^{\alpha}dx)$. For $ f\in L^{\infty}(B)$, the Toeplitz operator $ T_f^{(\alpha)}$ is defined on $ b^{2,\alpha}(B)$ by $ T_f^{(\alpha)}u = Q_{\alpha}[fu]$, where $ Q_{\alpha}$ is the orthogonal projection of $ L^2(B,(1-\vert x\vert^2)^{\alpha}dx)$ onto $ b^{2,\alpha}(B)$. In this note, we prove that for $ f\in C(B)\cap L^{\infty}(B)$ radial, $ \lim_{\alpha\to\infty} \Vert T_f^{(\alpha)}\Vert=\Vert f\Vert _{\infty}$.

References [Enhancements On Off] (What's this?)

  • 1. P. Ahern, M. Flores, and W. Rudin.
    An invariant volume-mean-value property.
    J. Funct. Anal., 111(2):380-397, 1993. MR 1203459 (94b:31002)
  • 2. L. V. Ahlfors.
    Möbius transformations in several dimensions. University of Minnesota, Minneapolis, Minn., 1981. MR 0725161 (84m:30028)
  • 3. S. Axler, P. Bourdon, and W. Ramey.
    Harmonic function theory, volume 137 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 2001.MR 1805196 (2001j:31001)
  • 4. F. A. Berezin.
    General concept of quantization.
    Comm. Math. Phys., 40:153-174, 1975. MR 0411452 (53:15186)
  • 5. M. Bordemann, E. Meinrenken, and M. Schlichenmaier.
    Toeplitz quantization of Kähler manifolds and $ {\rm gl}(N)$, $ N\to\infty$ limits.
    Comm. Math. Phys., 165(2):281-296, 1994. MR 1301849 (96f:58067)
  • 6. D. Borthwick, A. Lesniewski, and H. Upmeier.
    Nonperturbative deformation quantization of Cartan domains.
    J. Funct. Anal., 113(1):153-176, 1993. MR 1214901 (94d:47065)
  • 7. L. A. Coburn.
    Deformation estimates for the Berezin-Toeplitz quantization.
    Comm. Math. Phys., 149(2):415-424, 1992. MR 1186036 (93j:47038)
  • 8. R. R. Coifman and R. Rochberg.
    Representation theorems for holomorphic and harmonic functions in $ L\sp{p}$.
    In Representation theorems for Hardy spaces, volume 77 of Astérisque, pages 11-66. Soc. Math. France, Paris, 1980. MR 0604369 (82j:32015)
  • 9. M. Engliš.
    Weighted Bergman kernels and quantization.
    Comm. Math. Phys., 227(2):211-241, 2002. MR 1903645 (2003f:32003)
  • 10. M. Engliš. Some variations on the Berezin quantization method. In: J. Govaerts, M.N. Hounkonnou, A.M. Msezane (editors), Proceedings of the Third Workshop on Contemporary Problems in Mathematical Physics (CoProMaPh3, Cotonou, Benin, November 2003), World Scientific, Singapore, 2004, pp. 450-464.
  • 11. H. Hedenmalm, B. Korenblum, and K. Zhu.
    Theory of Bergman spaces,
    Springer-Verlag, New York, 2000. MR 1758653 (2001c:46043)
  • 12. S. Klimek and A. Lesniewski.
    Quantum Riemann surfaces. I. The unit disc.
    Comm. Math. Phys., 146(1):103-122, 1992. MR 1163670 (93g:58009)
  • 13. B. Korenblum and K. Zhu.
    An application of Tauberian theorems to Toeplitz operators.
    J. Operator Theory, 33(2):353-361, 1995. MR 1354985 (96i:47046)
  • 14. C. Liu and L. Peng.
    Boundary regularity in the Dirichlet problem for the invariant Laplacians $ \Delta\sb \gamma$ on the unit real ball.
    Proc. Amer. Math. Soc., 132(11):3259-3268 (electronic), 2004. MR 2073300 (2005f:35057)
  • 15. E. M. Stein and G. Weiss.
    Introduction to Fourier analysis on Euclidean spaces.
    Princeton University Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • 16. K. Stroethoff.
    Compact Toeplitz operators on weighted harmonic Bergman spaces.
    J. Austral. Math. Soc. Ser. A, 64(1):136-148, 1998. MR 1490152 (98k:47048)
  • 17. Z. Wu.
    Operators on harmonic Bergman spaces.
    Integral Equations Operator Theory, 24(3):352-371, 1996. MR 1375980 (97c:47028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B35, 47B38, 53D55

Retrieve articles in all journals with MSC (2000): 47B35, 47B38, 53D55

Additional Information

Congwen Liu
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026 People’s Republic of China

Keywords: Toeplitz operators, harmonic Bergman spaces, Deformation Estimate, Berezin type transforms
Received by editor(s): November 30, 2005
Received by editor(s) in revised form: May 26, 2006
Published electronically: May 8, 2007
Additional Notes: This work was supported in part by the National Natural Science Foundation of China grant 10601025.
Dedicated: Dedicated to Professor Jihuai Shi on the occasion of his seventieth birthday.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society