Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On finitely injective modules and locally pure-injective modules over Prüfer domains


Author: Luigi Salce
Journal: Proc. Amer. Math. Soc. 135 (2007), 3485-3493
MSC (2000): Primary 13A05; Secondary 13C11, 13F05
DOI: https://doi.org/10.1090/S0002-9939-07-08906-X
Published electronically: June 29, 2007
MathSciNet review: 2336561
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Over Matlis valuation domains there exist finitely injective modules which are not direct sums of injective modules, as well as complete locally pure-injective modules which are not the completion of a direct sum of pure-injective modules. Over Prüfer domains which are either almost maximal, or $ h$-local Matlis, finitely injective torsion modules and complete torsion-free locally pure-injective modules correspond to each other under the Matlis equivalence. Almost maximal Prüfer domains are characterized by the property that every torsion-free complete module is locally pure-injective. It is derived that semi-Dedekind domains are Dedekind.


References [Enhancements On Off] (What's this?)

  • 1. S. Bazzoni and L. Salce, An independence result on cotorsion theories over valuation domains, J. Algebra 243 (2001), 294-320. MR 1851665 (2002g:13029)
  • 2. W. Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc. 206 (1973), 203-223. MR 0325609 (48:3956)
  • 3. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260 (22:11017)
  • 4. P. Eklof and A. Mekler, Almost free modules, revised edition, North Holland, Elsevier, Amsterdam, 2002. MR 1914985 (2003e:20002)
  • 5. A. Facchini, Torsion-free covers and pure-injective envelopes over valuation domains, Israel J. Math. 52 (1985), 129-139. MR 815608 (87a:13013)
  • 6. A. Facchini, Absolutely pure modules and locally injective modules, Commutative ring theory (Fès, 1992), Lecture Notes in Pure and Appl. Math., vol. 153, Dekker, New York, 1994, pp. 105-109. MR 1261882 (94m:16028)
  • 7. L. Fuchs and L. Salce, Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics, vol. 97, Marcel Dekker Inc., New York, 1985. MR 786121 (86h:13008)
  • 8. -, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, vol. 84, American Mathematical Society, Providence, RI, 2001.
  • 9. P. Griffith, A note on a theorem of Hill, Pacific J. Math. 29 (1969), 279-284. MR 0245613 (39:6919)
  • 10. L. Gruson and C. U. Jensen, Deux applications de la notion de $ L$-dimension, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 1, Aii, A23-A24. MR 0401880 (53:5706)
  • 11. P. Hill, On the decomposition of groups, Canad. J. Math. 21 (1969), 762-768. MR 0249507 (40:2752)
  • 12. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001)
  • 13. S. B. Lee, $ h$-divisible modules, Comm. Algebra, 31 (1) (2003), 513-525. MR 1969238 (2004i:13014)
  • 14. E. Matlis, Divisible modules, Proc. Amer. Math. Soc. 11 (1960), 385-391. MR 0116044 (22:6839)
  • 15. V. S. Ramamurthi and K. M. Rangaswamy, On finitely injective modules, J. Austral. Math. Soc. 16 (1973), 239-248. MR 0332882 (48:11207)
  • 16. L. Salce and P. Vámos, On some classes of divisible modules, Rend. Sem. Mat. Univ. Padova, 115 (2006), 125-136. MR 2245591 (2007c:13002)
  • 17. R. Warfield, Relatively injective modules, unpublished manuscript, 1969.
  • 18. W. Zimmermann, Rein-injective direkte Summen von Moduln, Comm. Algebra 5 (1977), 1083-1117. MR 0450327 (56:8623)
  • 19. -, On locally pure-injective modules, J. Pure Appl. Algebra 166 (2002), 337-357. MR 1870625 (2002j:16006)
  • 20. B. Zimmermann-Huisgen, On the abundance of $ \aleph\sb 1$-separable modules, Abelian groups and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI, 1992, pp. 167-180. MR 1176118 (93f:16012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A05, 13C11, 13F05

Retrieve articles in all journals with MSC (2000): 13A05, 13C11, 13F05


Additional Information

Luigi Salce
Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste 63, I-35121 Padova, Italy
Email: salce@math.unipd.it

DOI: https://doi.org/10.1090/S0002-9939-07-08906-X
Keywords: Finitely injective modules, locally pure-injective modules, Matlis equivalence
Received by editor(s): February 6, 2006
Received by editor(s) in revised form: August 21, 2006
Published electronically: June 29, 2007
Additional Notes: The research of this author was supported by MIUR, PRIN 2005.
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society